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ABSTRACT

Recent research on non-linear decoding in £A modulation
has shown that the classical linear decoding scheme is not
optimal and that the MSE of reconstruction can be im-
proved by 3 dB per octave of oversampling with a decoding
scheme based on consistent estimation. In the example of
multi-loop £A modulation, we present an analysis of the
intrinsic behavior of an encoder, based on signal partition-
ing, thus providing a basic tool for the theoretical analysis
of optimal decoding MSE. We show the application of this
analysis tool to the case of MSE lower bounds for constant
input signals in multi-loop £A modulation.

1. Introduction

The most successful technique currently used in oversam-
pled A /D conversion(ADC) is £A modulation [1]. The sam-
ples of the bandlimited input signal are no longer purely
quantized in amplitude, but processed through a complete
encoding including integration, quantization and feedback.
Figure 1 shows the double-loop encoding configuration of
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Figure 1: Block diagram of the double-loop £A modulator.

LA modulation. However, the reconstruction of the origi-
nal input signal from its encoded version is classically per-
formed like in the general case of oversampled ADC, that is,
by using a lowpass filter. This is the decoding part of £A
modulation and is basically a linear processing. The per-
formance of this reconstruction is limited by the amount of
in-band error existing in the encoded signal. This amount
is well predicted using the classical white noise model of the
quantization error signal [1]. In the multi-loop case, it was
shown in [2] that the remaining error power decreases with

the oversampling ratio R in O(R="+Y)), where n is the
order of the modulator.

Questions were recently raised whether, given an encod-
ing configuration, the linear decoding performs the best pos-
sible reconstruction of the input signal. The question of op-
timal reconstruction was first studied in [3, 4] in the case of
constant input signals with the single-loop and the double-
loop configurations. By studying the intrinsic behavior of
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the encoder, the optimal decoding of constant inputs was
described and its non-linearity was demonstrated. It was
proved in [4] that the mean square error (MSE) of the op-
timal decoding has lower bounds of the order O(R~%) and
O(R™®) in single-loop and double-loop £A modulations re-
spectively. This shows that, in the case of constant inputs,
the optimal decoding MSE yields the same asymptotic de-
pendence on R as the linear decoding MSE.

Non-linear decoding in the general context of oversam-
pled ADC with time-varying bandlimited signals was first
studied in [5]. The decoding criterion was to find, from
the given encoded signal, a consistent estimate, that is,
a bandlimited signal which necessarily produces the same
encoded signal. An algorithm for consistent decoding,
based on the principle of alternating projections, was pro-
posed and tested [5]. When input signals are sinusoids, it
was found that the achieved consistent estimates have an
MSE dependence of the order O(R™*) and O(R~®) for the
single-loop and the double-loop ¥ A modulators, instead of
O(R™?) and O(R™®) in linear decoding. This represented
an asymptotic improvement of 3 dB per octave of over-
sampling over linear decoding for the two types of encoder.
Using the same consistent decoding scheme, the asymptotic

behavior of the order O(R™**t?)) instead of O(R~("+1)
in linear decoding, was obtained in [6, 7] with n** order

multi-bit multi-loop A modulators, and #‘® order multi-
stage LA modulators, and more complex bandlimited input
signals. Thus, contrary to the usual case in the classical
analysis of oversampled ADC, the behavior of constant in-
puts is not representative for the general case.

To obtain general results on the theoretical limits of sig-
nal reconstruction in ¥A modulation, it is therefore nec-
essary to deal with time-varying input signals. In this pa-
per, we present a particular analysis of ¥A modulators in
their multi-loop configuration, which points out a method
to derive lower bounds on optimal decoding MSE with more
complex signals than constant inputs. As a generalization of
(3, 4], we show in Section 2 that optimal decoding is defined
from the description of an encoder as inducing a partition
of the space of input signals, whether they are constant,
or more generally, bandlimited. For the multi-loop config-
uration of ©A modulation, we show in Section 3 that this
partition has very particular properties, independent of the
nature of the input signals. As an application, we show in
Section 4 how these properties can be used to derive MSE
lower bounds when input signals are constant. In this ap-
plication, we find a lower bound of the order O(R™¢*"+%))
for multi-loop A modulators of any order n, regardless of
the number of bits used for the quantizer.



2. Partitioning approach and optimal decoding

It was shown in [3, 4]1 that in the context of constant input
signals, a £A modulator defines a one-to-one correspon-
dence between intervals of dc input values and the possible
encoded signals. Optimal decoding is therefore achieved by
taking the center of the interval corresponding to the given
encoded signal and its performance is an intrinsic charac-
teristic of the encoder.

To generalize this approach to a broader class of signals,
it is important to see that the encoder has an intrinsic be-
havior which is independent of the type of input signal.
Based on the deterministic definition of quantization, it is
shown in [6, 7] that the whole encoder works as a map-
ping, transforming a discrete-time input signal’ X of the
space R¥ into an encoded signal C which is another sig-
nal of RY (see Figure 1). This mapping naturally induces
a partition of R™ where each cell C(C) corresponds to a
possible encoded signal C' and comprises all input signals
X mapped into C. For illustration, we show in F igure 2
the partition induced by a two-bit double-loop EA modu-
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Figure 2: Partition induced in R? by a two-bit double-
loop £A modulator. The shaded lines represent the non-
overload region and the dotted lines represent the case of
infinite quantizer.

lator in the case where signals are limited to two samples
(N = 2). On various types of encoders (simple, predic-
tive, noise-shaping encoders), it was proved in [5, 6, 7] that
the cells C(C) are necessarily convex. Thus, once the en-
coder is characterized, its intrinsic behavior in the context
of oversampled ADC can be studied. In this context, input
signals are confined to belong to a certain subspace V of
bandlimited signals. By taking the restriction of the signal
partition to the subspace V, we naturally conclude that the

1We assume that input signals after sampling are N-point
sequences. The kt* sample of an input signal X is denoted by
X (k) =
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encoder induces a partition on V composed of cells of the
type C(C)NV which are convex. If the input signals are con-
stant, V is simply a one dimensional subspace of R", and
the cells C(C) NV are necessarily segments of V (see Figure
2). This gives back the description presented in [3,4] asa
particular case. However, this description is valid for mput
spaces V of any dimension, and optimal decoding consists
in general in taking the centroid of the cell €(C)NY, given
the encoded signal C. Figure 3 shows the partition induced
by a single-loop ©A modulator, in the case where V is the
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Figure 3: Partition induced on V by a single-loop £A mod-
ulator, where V is the two dimensional space of zero-phase
sinusoids of fixed frequency and arbitrary dc component.
The number of samples per period is 12.

two dimensional space of zero-phase sinusoids of fixed pe-
riod and arbitrary dc component. For the case of constant
inputs, the dc value intervals introduced in [3, 4] can be seen
in Figure 3 by taking the intersection of the two dimensional
partition with the dc component axis (represented by the
dotted line).

Assuming that the input signals are constant with dc val-
ues uniformly distributed in an interval of length d, it was
shown in [3] that a lower bound on the optimal decoding
MSE can be obtained from the total number M of cells di-
viding the input interval. It was shown that the optimal
MSE is necessarily greater than that obtained if the parti-
tion of the interval was uniform. This leads to [3}:
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The generalization of this technique to input signal spaces
of higher dimension would be to count the number M per
unit volume in V, and take as a lower bound, the smallest
MSE achievable by a partition, given the density M. For
example, in two dimensions, the minimal MSE is achieved
by hexagonal cells. Results for partitions of higher dimen-
sions can be found in [8). In order to derive the density
of cells, it is important to first study the properties of the
partition induced by the encoder.

MSEop >

3. Partition induced by a multi-loop ZA

modulator

In this section, we show that the partition induced on R¥
by a multi-loop ZA modulator has some interesting lattice
properties. To analyze this partition, it is useful to work
on the equivalent block diagram of a noise-shaping encoder
shown in Figure 4 which was introduced in [g] We show
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Figure 4: Equivalent block diagram of noise-shaping en-
coder [2].
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Figure 5: Equivalent block diagram of a double-loop LA
modulator.
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in Figure 5 how a double-loop TA modulator can be trans-
formed to the equivalent diagram. In the general n-loop
case, we see that H is an n'® order integrator and G is
some deterministic feedback function. The procedure is the
following. To start with, let us consider every -possible en-
coded signal C, and derive the partition induced by the
quantizer on the space of signals B (notations of Figure 4).
Figure 6(a) shows the resulting partition in the case of a
two-bit double-loop LA modulator using a uniform quan-
tizer of step size ¢. If the quantizer had an infinite number
of levels, the cell vertices would form a cubic lattice gener-
ated by the basis of signals (E;)1<;<n~ defined by E;(k) =0
for all k # j, and E;(j) = g. The lattice is represented by
dotted lines in Figure 6(a). When the quantizer is finite,
the induced partition is derived from the lattice by merging
certain cells (those located outside the non-overload region
represented by a shaded line). We will say that the partition
has a lattice derived structure.

The second step is to derive the partition induced on
the space of signals A (see Figure 4). The procedure is the
following: for each encoded signal C, find the corresponding
cell induced by the quantizer and translate it by the vector
GLC’] For the two-bit double-loop configuration, Figure
6(b) shows that the resulting partition has a lattice derived
structure, with the same basis (E;)1<;<n. The reason is
that the samples of the feedback signal G[C] are necessarily
multiples of the lattice period g, since the operator G is
limited to pure summations [7].

As a final step, the partition induced by the complete
encoder is obtained by transforming the partition of sig-
nals A through the operator H™*, which is an n'* order
differentiator. Since H™! is linear, the lattice structure of
the previously obtained partition, is transformed into an-
other lattice structure (not necessarily cubic). The two-bit
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Figure 6: Intermediate partitions induced by a two-bit
double-loop ZA modulator &sa.me line conventions as in Fig-
ure 2. (a) Partition induced at the node B of the equiva-
lent block diagram (notations of Figure 4). (b) Partition
induced at the node A of the equivalent block diagram.



double-loop case is shown in Figure 2. _Therefore, the par-
tition has a lattice derived structure, with basis (F;); <i<N

where F; = H™'[Ej]forall j =1,...,N.

4.

As an example of application, we show how the lattice prop-
erties of the global partition can be used to derive a lower
bound on the optimal decoding MSE in the case of constant
inputs. Let us assume that input signals are uniformly dis-
tributed in a segment [X min, Xmaz] of V of length d. The
inequality (1) of Section 2 shows that an MSE lower bound
can be obtained by finding an upper bound on the num-
ber M of partition cells dividing the segment [X nin, X maz]
[3]. Let us assume for a while that the quantizer of the
multi-loop £A modulator is infinite. We saw that, in this
case, the partition induced by the encoder is a lattice gen-
erated by the basis (F,)i1<j<n. In the two-bit double-loop
case, Figure 7 shows the relative position of the segment
X min, X maz] wWith respect to the lattice. To find an upper

SFay

Application to the constant input case
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Figure 7: Relative position of the space V of constant input
signal with the lattice structure of the partition of Fig. 2.

bound on M, it is first necessary to calculate this relative
position. This amounts to calculating the decomposition of
the spanning signal Xo on the basis (F;)1<;<n:
N 0 -
Xo =EJ=1 a; - F,.
Applying the linear operator H on this decomposition, we

find H[Xo] = 3°7_ | o5 -H[F;] = 3.1, a%-E;. According to
the definition of (E;)i1<j<n, E; is simply the unit impulse
located at the time index k = j. Therefore, a? is necessarily
the value of the sequence H[X,] at the time index k = j.
But H[Xo] is the n*? order discrete-time integration of the
constant signal Xo of dc value 1. As a result, it can be
easily shown that

o) =3 =1 (G +n—1) = O(").
Let us write Xynin = E;v:x“;"i" i and Xomao =

Z;;] a’®* . F;, and let X = Z;V:l aj - F; be a signal
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of the segment [Xmin, Xmaz]. Suppose that we move the
signal X from Xmin to Xmaz. From Figure 7 it is easy to
see that whenever X enters a new cell of the lattice, there
is at least one of the coefficients a; which has its integer
part increased by 1. By scanning the whole segment, one
can derive that the total number M of encountered cells is
upper bounded by . _
M <YL (el = el +1),

where | z| designates the integer part of x. This was derived
with the assumption that the quantizer is infinite. However,
this inequality still holds when the quantizer is finite, since,
by the merging of certain cells, M can only decrease. It
is easy to see that |a]"*"| — |@]"]| < a** — a4+ 1.
Moreover, because the segment [X min, X maz] is of length d,
Xmaz—X min = d-X which implies that alt—a " = d-ag
for y =1,...,N. Then, we obtain

N N .
M<y i 1d-af+2N=dY 7 OG")+2N = O(N™H),
From (1), this finally implies that

MSEyp > O(N-(742))) = O(R-(2n42)),
Thus, we have shown that the dependence of the optimal re-
construction MSE with R is lower bounded by OfR'(Z"“) ,
for any order n, and regardless of the number of bits of the
quantizer. Note that in the first and second order case,
stronger lower bounds were found in [4].

5. Conclusion and future work

In £A modulation, the optimal decoding is defined from
the intrinsic behavior of the encoder which is to induce a
partition of the space of discrete-time signals. We show, in
the multi-loop configuration, that this partition has some
particular lattice properties which constitute potential tools
for the analysis of MSE lower bounds in the general case of
time-varying bandlimited signals. As a first demonstration,
we show their immediate application in the case of constant
inputs. The present partition analysis will be used to study
MSE lower bounds with sinusoidal inputs in a future work.
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