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ABSTRACT

New results on multidimensional filter banks and wavelets are
presented. We concentrate on the two-dimensional case with
sampling by 2 in each dimension and show how, by using an ap-
propriate cascade structure, nonseparable filters being both or-
thogonal and linear phase can be obtained, a construction not
possible when one-dimensional systems are used separately.
Condition for having at least one zero of the lowpass filter at
all aliasing frequencies (necessary for convergence) is given.
Finally, a first design example of two-dimensional orthonor-
mal wavelets with symmetries is presented, together with the
demonstration of continuity.

I. INTRODUCTION

During the past decade, the field of filter banks, or subband
coding, has established itself firmly as one of the very success-
ful methods for compressing signals ranging from speech to
images to video [1, 2]. At the same time, and from another
field — applied mathematics, the theory of wavelets emerged as
a powerful tool for providing time-frequency localized expan-
sions of signals [3]. Recently, it has been shown that the two
— filter banks and wavelets, are closely connected, in that one
can use iterated filter banks to obtain continuous-time wavelet
bases [3, 4], as well as see filter banks as a “discrete wavelet
transform” [5].

While most of these developments concentrated on one-
dimensional signals, and the multidimensional case was han-
dled via the temsor product (applying one-dimensional tech-
niques separately along the dimensions, e.g. for images), some
of the more recent efforts concentrated on the “true” multi-
dimensional case, both from the filter bank and the wavelet
aspects [6, 7, 8, 9]. By true we mean that both nonseparable
sampling and filtering are allowed. Although the true multidi-
mensional approach suffers from some drawbacks (e.g. higher
computational complexity, analysis becomes more involved),
it offers a few important advantages. For example, using non-
separable filters leads to more degrees of freedom in design,
and consequently better filters. Then, nonseparable sampling
opens a possibility of having schemes better adapted, for ex-
ample, to the human visual system. Finally, some solutions.
previously impossible, can be achieved using true multidimen-
sional systems.
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One such instance is the design of linear phase and orthonor-
mal filters when the sampling is separable by two in two di-
mensions (a case of practical interest in image compression).
It is well-known that in the one-dimensional two-channel case,
the above requirements are mutually exclusive (assuming fil-
ters have real coefficients and are FIR). This, in turn implies,
that the same restriction would hold if the system were used
separately in each dimension. However, by using nonsepa-
rable filters, one can actually find solutions producing filters
being both linear phase and orthonormal [10]. The aim of
this paper is to show how, by using these solutions, one can
construct two-dimensional orthonormal bases of wavelets with
symmetries. We offer the first example of a two-dimensional
compactly supported wavelet basis with the above properties.

II. SEPARABLE SAMPLING BY 2 IN 2 DIMENSIONS

We have mentioned earlier that a “true” multidimensional
treatment will imply nonseparable sampling or nonseparable
filtering. Here, we will concentrate on a separable sampling lat-
tice widely used in image compression, while the filters them-
selves will be nonseparable.

Let us thus examine the system given in Fig. 1(a) with the
sampling lattice as in Fig. 1(b). It is obvious from the fig-
ure that this lattice is separable (i.e. the sampling could be
performed first along the rows and then along the columns).
Since the sampling density is 4 (i.e. one out of every 4 sam-
ples is kept while all others are discarded), the corresponding
critically sampled filter bank has 4 channels. The analysis
filters are denoted by Ho(zi, 22), ..., Ha(z1,22), and they are
nonseparable. Their synthesis counterparts are denoted by
Go(z1,22),...,G3(z1,22). Then, the input/output relation-
ship is given by

Y(zl, ZQ) ==

Gp(z2,23) Hp(21, 23) xp(21.22). (1)

In the above, the matrices H,, G;, are the so-
called analysis/synthesis polyphase matrices containing the
polyphase components of analysis/synthesis filters, respec-
tively (polyphase components are the filters’ impulse responses
with respect to the 4 cosets of the sampling lattice). Similarly,
X, contains the 4 polyphase components of the input signal.

To obtain perfect reconstruction (i.e. the output signal is the
perfect replica of the input, possibly scaled and delayed), one
has to ensure that

Gp(z2,22) Hp(22.23) = ¢ 27" 27 ML (2)
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Figure 1: Filter bank with sampling by 2 in 2 dimensions. (a)
Schematic representation. (b) Sampling lattice.

For FIR filters, the necessary and sufficient condition is that
the determinant of the analysis polyphase matrix be a delay
(7, 8]. An easy way to achieve that is to build H, using cascade
structures since then the perfect reconstruction property is
structurally guaranteed, and moreover, some other properties
(e.g. linear phase) can be easily imposed.

III. LINEAR PHASE AND ORTHOGONAL CASCADE

A. Cascade Structure

The way the first linear phase cascade structure (in one di-
mension) was constructed in [11], was by using a linear phase
testing condition. This condition was later extended to two
and more dimensions, and was presented in a more general
form as well (not only in the polyphase domain) [7, 8]. The
way it could be written for this particular case is [10]

Hp(z1,22) = (212) ™" -a Hp(z',2570) 3, ®3)

where a is a diagonal symmetry matrix containing £1’s along
the diagonal (1 for a symmetric filter and —1 for an antisym-
metric filter) and J is an antidiagonal matrix.

Using the above, in [10], a cascade structure was presented
generating four linear phase and orthogonal filters of the same
size, where two of them are symmetric and two are antisym-

metric
k

Hy(s1,22) = Hpo [[ D(a1, 2) U, ()

i=1
and H,p, was chosen to be the matrix representing the Walsh-
Hadamard transform of size 4, D is the diagonal matrix of
delays (1 z7' 27! 27%27'), and U; are scalar persym-
metric (i.e. they satisfy U; = JU;J) matrices of the following

form:
a;  C b ds

¢ —a; —dy b -
U=y 4 -a ol (5)
dg' b; Ci Qy

and are required to be unitary. Note that with different signs in
the above matrix, the cascade would produce non-orthogonal
linear phase filters, but with added symmetries. However, it

turns out that without simplifications, the above cascade is
very difficult to use for constructing wavelets.

B. Factorization

It has been observed that the number of channels (or sampling
density in critically sampled filter banks) is responsible for
the fact that many results look similar (at least algebraically)
irrespective of the number of dimensions. Thus, for example,
the above cascade was developed having in mind the one in
[11]. By the same token, we are going to use some results
developed for the one-dimensional case to simplify our cascade
[12].

Note first that the matrix U, can be expressed as follows:
(5813 aaa)
JB,J JA,J)’

C 20 )

U, =

| P
_ 1 41 I T2 )_I__(I I)
- P\/i(l —I)g r2i41 2\I -1 P,
w R, w

where the notation is following [12]. Then for the above matrix
to be unitary, r2; and rz;4+; have to be unitary as well, that
is, each r; is characterized by one degree of freedom (( N2/2) in
the general case of N channels, where N is even). Also, the
starting matrix Hp, has to be unitary and satisfy the testing
condition (3), and thus

H,, = Ro WP, (6)

Therefore, the whole structure can be written as

k
Ho(z1,22) = RoWPHD(zl,zz)PWR;WP, (7)

i=1

where each matrix r; in R, is one Givens,rotation

cos i  sin a;
I (el ). (8)
—sina; cosa;

The filters obtained in this manner are going to be orthogonal,
have linear phase and will be of size 2(k + 1) x 2(k +1). The
number of degrees of freedom will then be 2(k + 1). Note also
that, as in [12], the above cascade is valid for all filter banks
with an even number of channels. However, it is not clear
whether it is complete, even in the sense of [12].

IV. WAVELET DESIGN AND REGULARITY

A way to obtain wavelet bases is by iterating filter banks, as
shown in Fig. 2. Then, a continuous-time, piecewise constant
function at any point in the system is constructed from the
equivalent discrete-time filter. By iterating to infinity, one
can identify the scaling function, as the result of iterating the
lowpass branch, and wavelets, as the result of going through all
lowpass iterations and one highpass branch. To ensure that the
resulting functions converge and are in Lo, it has been shown
in [8, 13] that at least one zero at all aliasing frequencies is
necessary.
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Figure 2: Filter bank with iterated lowpass branch used for
constructing continuous-time wavelet bases.

A. One Zero Is Necessary

Let us therefore try to impose one zero at all aliasing fre-
quencies, that is, at (z1,22) = (—=1,-1), (21,22) = (1,-1),
(z1, 22) = (—1,1). First note that to obtain filters, one has to
upsample the polyphase matrix, that is

Ho(zl,zz) 11

Hi(z,22) | _ 2 .2 z

Ha(z1, 22) = Hp(=1,22) 22—1 . (9
Hj3(z, z2) zl_lzz_1

Thus, for z1, = =1, the diagonal matrix of delays in (7),
D(z1, z2), becomes an identity matrix, and bearing in mind
that P? = W? =1,

k
Hp(z3,22) |sy =1 = RoWPHPWR;WP (10)
=1
k
= ([[rowP. (11)
=0
But
k Hk o
HR,‘ = ( i=0 "3 k ), (12)
i=0 Hi:o T2i41
and
k .
o cos i Sl ) o
Hl‘m - (—sin%‘.azg cos%i az.‘)’ (13)
=0

and similarly for H:‘;o roi+1. Calling a; = z, oo and b; =
3", o2i41, we finally obtain

cosa; sina; sina; cos a;
2 2 —sina; cosa; cosa; —sina;
H,(z7, 2 =41 = . .
p(21,22) oy =0 cosb;, sinb; —sinb; —~—cosb;
—sinb; cosb; —cosb;, sinb;

Now the condition that Ho(—1,—1) = 0 translates to

(14)

cosa; = sina;.

Bearing also in mind that Ho(1,1) = 2 [8], we get that
™
ai = Zaz; = 7+,
t

that is, the sum of all even angles has to equal 2nr + /4.
In a similar manner, we get that Ho(1,—1) = Ho(—1,1) =0
by construction. Thus, it is sufficient for the sum of all even
angles to satisfy (15), and the lowpass filter will have a zero at
all three aliasing frequencies. This is similar to the condition
in the one-dimensional two-channel case, where the sum of all
angles has to be 7/4 [14].

(15)

B. Design Ezample

Having presented a cascade structurally producing filters be-
ing both orthogonal and linear phase, let us now give a de-
sign example leading to a continuous-time orthonormal wavelet
basis characterized by a scaling function ¢(t1,%2) and three
“mother” wavelets 9:(t:,12), ¢ = 1,2, 3, where both the scal-
ing function and the wavelets are symmetric/antisymmetric.

We start by using (7) with & = 2 leading to filters of size 6 x 6,
and requiring the lowpass filter to have a second-order zero at
all three aliasing frequencies, that is

7]
— 16
0212 (16)

for (z1,22) = (=1,-1), (21, 22) = (1,-1), (21, 22) = (-1,1).
Upon solving the set of nonlinear equations, one gets the fol-
lowing solution:

Ho(z,22) = 0, Ho(z1,22) = 0,

1
ap = %, @1 = m— arcsin 7, (17)
a; = O, a3 = 2arcsin % -, (18)
.1
ag = 0, oy = —% — arcsin e (19)

It is obvious from the above that the even angles indeed sum
up to 7/4 as required by (15).

C. Regularity Estimates

Once the solution is found, one has to- verify that the func-
tion it converges to will be at least continuous. A fast way
of estimating it is by monitoring the behavior of the largest
first-order differences of the iterates. For this solution, the
maximum first-order differences decrease with an almost con-
stant rate. However, this is only an indicator. In [15], the
author develops a method for checking the regularity of a two-
dimensional filter. Since the theory behind it is quite involved,
here we just outline the process, for more details, the reader is
referred to [15]. First, one computes the iterate and then finite
differences in two directions. This is followed by identifying all
polyphase components of these finite differences, and by find-
ing estimates for each one of them. Finally, the maximum of
all the above estimates — p — is found. Then the lower bound
is {15]

s = —log 50, (20)
which in our case is found in iteration 6 and equals to s =
0.4011 which tells us that the function is at least continuous
(it is continuous when s > 0). The fourth iteration of the
scaling function and the corresponding wavelets is given in
Fig. 3 (frontal view is given so as to make the symmetries
obvious).
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Figure 3: Fourth iteration of the scaling function and wavelets obtained using cascade (7) with k = 2 and angles as in (17)-(19).

V. CONCLUSION

We have shown how one can obtain two-dimensional nonsepa-
rable filters/wavelets being both orthogonal and linear phase,
construction which was not possible when one-dimensional sys-
tems were used separately. We use a particular cascade struc-
ture, which structurally guarantees that the filters obtained
will be both orthogonal and linear phase. Owing to the ne-
cessity of at least one zero of the lowpass filter at all aliasing
frequencies (for convergence purposes), we found the require-
ment on the angles in the cascade so that the condition is
satisfied. Finally, a design example of orthonormal wavelets
with symmetries is given together with the demonstration of
continuity.
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