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Abstract

We analyze the behavior of a single-loop £A
modulator using a vector quantization (VQ)
approach. We extract the encoder-decoder
structure typical of VQ, existing in a LA
modulator. The study of the encoding part
gives the intrinsic behavior of the modulator.
Bounds to the intrinsic performance of the
T A modulator can be derived through this
approach in the oversampling situation, as-
suming periodicity of the bandlimited input
signals.

1 Introduction

Substantial research has been devoted to the theoreti-
cal analysis of SA modulation, involving statistical ap-
proaches [1], as well as nonlinear dynamics approaches
[2]. In this paper, we propose to study the behavior of
a single-loop ZA modulator through a vector quanti-
zation (VQ) point of view. Indeed, the input of a ZA
modulator is an N-point sequence of samples which
can be considered as a vector of RY. We show that
the output of a modulator can be interpreted as the
codevector output of a vector quantizer. As in the
general case of VQ, we show that a XA modulator has
a built-in encoder-decoder structure. Because the de-
coding part can always be modified by postprocessing,
we explain that the intrinsic behavior of the modula-
tor lies in its encoding part and consequently in the
vector space partition induced by the encoding part.
Assuming no overloading of the scalar quantizer, we
study this partition both when input sequences are not
constrained and in the oversampling situation. In the
second case, we confine ourselves to periodic bandlim-
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Figure 1: Block diagram of the single-loop XA modu-
lator.
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ited input signals. We detail the particular structure of
the partition and derive that the mean squared error
(MSE) of the £A modulator with optimal decoding
is asymptotically lower bounded with respect to the
oversampling ratio R in O(R™*).

2 Vector quantization view

Figure 1 shows the block diagram of a single-loop XA
modulator, where Q symbolizes a scalar quantizer. In
general, the input is discrete-time and of finite length
as it has to be the case in reality. Let N be the total
number of input samples and zy, ..., zx be the samples.
Then, the output is an N-point sequence of discrete
value samples c,,...,cy. Our quantization approach
starts by studying the pure behavior of the modulator
as a mapping from the vector & = (21, %2,...,ZN) €
RY to the vector & = (e1,¢z,...,cN) € RN. With
this approach, the modulator obviously behaves like
a vector quantizer since the output ¢ only belongs to
a discrete subset of RY. When the scalar quantizer
has only a finite number of quantization levels, this
set is even finite. In this paper, we assume that the
scalar quantizer is uniform with step size ¢ within its
no-overload region (see Figure 2). As a consequence,
the discrete output vector ¢ necessarily belongs to a
lattice of RY. Then, it can be immediately said that
a LA modulator is a lattice quantizer in its own no-
overload region, that is, the set of input vectors ¥ such
that Q does not overload. However the information
yet to be determined is how the input vectors & are
mapped to this lattice. This information is necessary
to evaluate the performance of the vector quantizer.
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Figure 2: Transfer function of the scalar quantizer in
its no-overload region.
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In our notations, this performance is measured by the
mean squared error ||€ — E[|2 = 2, |ex — 24]? aver-
aged over all input vectors Z for a given probability
distribution p in RY.

The mapping process of a vector quantizer as a
many-to-one mapping, is usually presented as the suc-
cession of two separate steps, which are encoding and
decoding [3]. The encoder is the part which decides
what sets of input vectors will be given the same out-
put codevector (since we have a many-to-one map-
ping). Thus the encoder defines a partition of the in-
put space where each cell is the set of input vectors
which will be assigned the same output codevector.
The encoder will only provide an index which charac-
terizes the partition cell into which the current input
vector falls. Then, it is the role of the decoder to map
each cell into a single vector representative, that is,
the codevector. This decomposition normally appears
by design. The performance of the vector quantizer is
a result of the partitioning operation and the choice of
codevectors. In ©A modulation, this decomposition of
course does not appear naturally since it was not de-
signed as a vector quantizer. However, this structure
can be extracted by block diagram transformation as
shown in the next paragraph.

3 Encoding-decoding decomposition

In this paragraph, we show the encoder-decoder de-
composition of a single-loop XA modulator assuming
that the input vectors are restricted to the no-overload
region. To perform the decomposition, we first trans-
form the block diagram in order to get rid of the feed-
back loop. According to Figure 2, the transfer func-
tion of the scalar quantizer in the no-overload region

can be expressed as Q[y] = ¢ (l%J + %) , where |z]
designates the greatest integer smaller than or equal
to z. The block diagram of the modulator with this
explicit expression is shown in Figure 3(a). The equiv-
alent block diagram of Figure 3(b) without feedback
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Figure 3: Equivalent block diagrams of the single-loop
YA modulator in the no-overload region.
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loop can be obtained thanks to the following equation,
based on the notations of Figure 3(a):

kofe 1 korz 1
Vk>1 Z_2)= Z_2\l. @
1y (3-1)= |5 (5a)) W
i=1 j=1

This equation is proved in [4]. It shows the equality
between a certain integrated version of the output and
the quantized version of a certain integrated version of
the input. Now, let us define

ko fz 1
w=2(%-3)
i=1 7
with the convention zg = ag = 0. The sequence 2z can
be obtained as shown by the block diagram of Fig-
ure 3(b). Thanks to equation (1), we have ax = |2k]
which is also implemented in the same block diagram.
Finally (2) implies that cx = ¢ (ak —ak_1 + %) which
is indeed the output of the block diagram. This shows

the equivalence of Figures 3(a) and (b).

The encoding part is the front end portion of Fig-
ure 3(b) which makes the decision to merge whole
sets of input signals into single values. It is there-
fore delimited by the quantization operator |-J. One
can check that the rest of the diagram only performs
a one-to-one mapping transformation. The output
of the encoder thus defined is an N-point sequence
of integers ai,...,an. We directly take the N-tuple
A = (a1, ...,an) as index to the partition cell corre-
sponding to the output ay, ..., an. The goal will be to
determine the geometry of this partition. Then, the
rest of the diagram can be interpreted as an operator
which maps each possible index 4 = (ay,...,an) into
a codevector ¢, and thus plays the role of the decoder.
The goal will be to determine how each codevector is
positioned by the encoder with respect to its corre-
sponding cell.

The encoder which maps & into A = (a1,...,an)
can be considered as N subencoders working in par-
allel mapping & into ax for ¥ = 1,..., N respectively.
Then, the partition defined by the whole encoder is
the intersection of the partitions defined by these N
subencoders respectively. Let us study the k*® suben-
coder. Since ax = |zx), we would like to express
2z in terms of £ Using the inner product notation
< Z,§ >= #Z_;\;l z;y;, the expression of z in (2)
can be written in the form z, =< di,Z > —Cj, where

k times

- N k .

de = 5 -(1,..,1,0,..,0) and Cj = 3. Using these
notations, the block diagram of the whole encoder can
be equivalently represented as shown in Figure 4. It
is easy to see that the partition defined by the kth
subencoder is composed of cells separated by hyper-
planes of RY perpendicular to di and equally spaced

by qx = II_d}m' The vector di has the meaning of a wave

vector. We therefore call this partition a hyperplane
wave partition. Then the cells of the global partition



are delimited by the hyperplanes of the N subparti-
tions altogether. Because the number of hyperplane
directions is equal to the dimension of the space, the
cells are simply N dimensional parallelepipeds. Their
sides are respectively perpendicular to d:, ‘..,JN and
their vertices form a lattice in the no-overload region.
One can see that the resulting partition is far from
being a Voronoi partition.

It was shown in [5] that the codevector & correspond-
ing to each parallelepipedic cell in the no-overload re-
gion is in fact the geometric center of the cell. This
implies that, assuming a uniform probability distribu-
tion of the input vectors at least in the no-overload
region, the LA decoder is indeed optimal with regard
to the LA encoder.

4 Case of oversampled YA modulation

The previous paragraphs described the behavior of a
£ A modulator as a quantizer of non-constrained input
sequences. In reality, ZA modulation was designed
to quantize the oversampled version of bandlimited
continuous-time signals. We propose to study the sit-
uation where' the bandlimited signals are T-periodic
and uniformly sampled N times in the interval ]0, 77
Such signals necessarily have the following finite dis-
crete Fourier expansion

P
z(t) :X1+Z X2:V/2 cos (27ri%)+X2,~+1\/§sin (271'1'%) ,

i=1
(3)
where X;, X3, ..., Xw are W real numbers with W =
2p + 1. These continuous-time signals necessarily be-
long to a W dimensional space of signals. Then,
the input sequences of the modulator have the form
zx = z(£T) where z(t) verifies (3). We assume
that the oversampling ratio R = % is greater than
1. It is easy to see that the corresponding vectors
# = (z1,...,zn) necessarily belong to a W dimen-
sional subspace V of R¥. Also, it can be easily shown
that the norm of & is related to the MSE of «(t) as

= T
12 = 7 fy le(@)* dt.

Figure 4: Equivalent structure of the ©A encoder. The
symbol~< dy, - > designates the function which maps &
into <dg,Z>.
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Traditionally, an oversampled A modulator is fol-
lowed by a discrete-time lowpass filter to recover a ban-
dlimited signal from the quantized output sequence
¢1,...,cn. In our vector approach, this lowpass filter-
ing amounts to an orthogonal projection of ¢ onto the
space V. The global VQ diagram of oversampled A
modulation is shown in Figure 5. The system can be
studied as a vector quantizer of the W dimensional
space V. Note that the MSE between the continuous-
time versions z(¢) and ¢/(t) of £ and ¢ respectively, is
equal to ||¢ — #||> which will be obtained through the
study of the VQ performance.

The encoding part of the vector quantizer is in fact
the same as in the previous general case. Its struc-
ture is still given by Figure 4. The difference is that
the vectors dx of this block diagram belong the space
RY which is larger than the space V of input vec-
tors #. This difference can be solved by introducing
the vectors Jj‘ which are the orthogonal projections of
d on V respectively. It is easy to see that VZ € V,
< dy, & >=< (f;‘,f >. In the diagram of Figure 4 we
can then replace d by d_;c As before, we conclude that
an oversampled ZA encoder is composed of N suben-
coders working in parallel which define N hyperplane
wave partitions of V with wave vectors d-;‘ respectively.
This time, the whole partition, still obtained from the
intersection of these N subpartitions, is no longer com-
posed of parallelepipedic cells, since the number N of
hyperplane directions is superior to the dimension W
of the input space V . The resulting structure can be
observed in Figure 6 which shows the partition defined
by the modulator on the two dimensional space of T-
periodic sinusoids with arbitrary phase and amplitude.

Now, one wonders whether the set of codevectors ¢
obtained by projection of the vectors & on V is still op-
timal with regard to the LA encoder in V for some in-
put probability distribution. It was in fact shown in [5]
that this set is not optimal and is not even consistent.
This means that each possible codevector ¢ does not
necessarily lies in its corresponding partition cell. Nu-
merical tests performed in [5] also showed differences
of performance between the linear decoder (using the
bandlimitation filter) and a consistent decoder (having
consistent codevectors). In the first case, the averaged
MSE ||¢/ — ||? was observed to decrease asymptotically
with the oversampling ratio R in R=3. This corre-
sponds to the classical performance of the single-loop
LA modulator [1]. In the second case, the asymptotic
decrease was observed to be faster and in R™%.

oversampied oversampled
XA encoder ZA decoder
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Figure 5: Vector quantization block diagram of over-
sampled A modulation with linear decoding.




5 Intrinsic performance of

oversampled A modulation

Although the T A decoder part of Figure 3(b) is a built-
in function of the ¥A modulator of Figure 1, we con-
sider that the intrinsic performance of a £A modulator
all depends on its encoding part. The reason is that
after a signal is quantized by a ¥A modulator, the
decoding choice can always (at least theoretically) be
modified by postprocessing, since the mapping from
the cell indices A to the codevectors ¢ is invertible
(see Figure 3(b)). Then, we define the intrinsic per-
formance of the oversampled ¥A modulator as to be
the VQ performance we would get if we used the over-
sampled 2 A decoder which is optimal with respect to
the LA encoding part.

In this paragraph, we propose to derive a bound
to this performance with the assumption of no-
overloading input signals. Precisely, we derive a lower
bound to the averaged MSE yielded by the optimal de-
coder for a given probability distribution p of & in the
no-overload region, as a function of the oversampling
ratio R. This MSE will be denoted by MSE,;.

According to [6], such a lower bound can be derived
if we know the number of cells M of the encoding par-
tition in the input region. It was indeed shown that
for M large enough,

MSEq > C(W,p)- M~V (4)
where C(W, p) is a coefficient which only depends on
W and p. For the derivation of an MSE lower bound,
it is sufficient to derive an upper bound on M. This
can be done thanks to the hyperplane wave structure
of the encoding partition. It was indeed shown in [7]
that

(®)

where D is the diameter of the input region and d is
the maximum length (or norm) of the wave vectors.
Because orthogonal projections are non-expansive op-
erators, we can write ||d,||? < ||dx]|2 = * —1;1; - k.
This implies that d < %. It is easy to show that
N .

(W) < %—v:, Then, using (4), (5) and the last two
inequalities, we have

M < (::) (Dd+2)%Y,

D -2
—N+ 2)

q

Finally, using the relation N = R-W, we obtain for R
asymptotically large

MSEo > (

MSE,p > C(W,p) - WiV N-2 (

2
L) cwp) R
where C'(W,p) = C(W,p) - W**W . W~%  This
proves that the asymptotic behavior of MSE,,; is
lower bounded by O(R™*). This lower bound was
shown in [8] in the case of constant inputs.

The numerical tests performed in [5] showed that
there exists a decoder which achieves this asymptotic
behavior. This evidence indicates that O(R™*) is not
only a lower bound but might be achieved by MSE,,,.
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Figure 6: Partition defined by a single-bit single-loop
YA modulator on the space of sinusoids of arbitrary
phase and amplitude, sampled 12 times in one period.
The circle represents the no-overload region.



