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ABSTRACT

In many hybrid video compression algorithms there is a
clear distinction between motion estimation and com-
pensation (MEMC) on the one hand, and transform
coding of the residue on the other hand. By trans-
lating MEMC into the framework of Matching Pursuit
(MP), we will show that unification of both steps is
possible. Moreover, adapting the MP approach to the
small size dictionaries involved in MEMC, it is shown
that unification may in principle lead to a better per-
formance of hybrid coding schemes. We close with a
discussion on the practical obstacles of the technique,
and how to avoid them.

1. INTRODUCTION

A technique used in statistics and time-frequency anal-
ysis called matching pursuit is proposed for signal
compression. It is a successive approximation tech-
nique with a redundant dictionary of prototype wave-
forms. We derive an orthogonalized version that is
well suited for compression applications, and propose a
greedy algorithm that searches for an approximation in
arate-distortion sense. We discuss dictionaries that are
optimized in a rate-distortion sense, and indicate dif-
ferences and generalizations with respect to the usual
matching pursuit algorithms.

We then indicate that traditional block based mo-
tion compensated video coding is a particular case of

matching pursuit, with a dictionary based on past frames.

The matching pursuit framework allows analysis of cur-
rent algorithms, as well extensions thereof. In particu-
lar, we discuss the inclusion of illumination changes,
scaling and subpixel accuracy using our framework.
Moreover, we show that due to the small size of the
dictionaries involved, the recursive nature of the gen-
eral MP algorithm can be replaced by the direct com-
putation of the orthogonal projection on the span of
the dictionaries involved.
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2. MATCHING PURSUIT AND ITS
ORTHOGONALIZED VERSION

We will concentrate on the finite dimensional cuse, that
is, consider vectors from the Hilbert space H = RV.
The inner product of z,y € H, defined as (ic,y) =
2, z[n] - y[n], defines a norm ||z]| = (z,z)!/2. Choose
a dictionary D = {¢3} in H, with ||¢x]| = 1 and
span(D) = H. Typically, |D| = M is larger han N,
and thus {¢.} is a redundant or over complete set of
vectors in H. Matching pursuit [2] is a greedy algo-
rithm to match an input signal f € H by a linear
combination of ¢;’s. Start by searching for ¢, such
that

[(¢xo, )l > @ I{¢s, )],

(o is typically close or equal to 1) and write f as its
projection onto ¢, and a residue R, f,

f - (¢ko;f) ¢ko+R1f- (2)

The algorithm is then iterated on R; f and so on, until
some convergence criterion || Ry, f|] < €|| f||, where e > 0,
is met. We can thus write (calling f = Ro f)

ik, 0<a<l (1)

n-1

F =3 (k Rif) bi+ Ruf. (3)

i=0

While R,f L ¢i,_,, the residue is in general not or-
thogonal to the other vectors ¢x,,2 = 0...n—%. Thus,
even in finite dimensional spaces, the matching pursuit
will usually converge slowly, while an orthogonalized
version will converge in N steps [?]. We derived an
orthogonal matching pursuit based on Gram-Schmitt
orthogonalization that simply keeps an orthogonal set
of best matches. The idea is to successively project
the remaining vectors onto the orthogonal complement
with respect to the current (orthogonal) set o' chosen
vectors. The resulting orthogonalized set is call:d {4;}.

3. MATCHING PURSUIT FOR
COMPRESSION

In the context of compression, we have to consider both
the approximation quality (including quantization of



the inner products involved in the expansion) and the
rate associated to selecting a particular vector and the
related quantized inner product. Designing a good dic-
tionary in this rate-distortion sense is a difficult prob-
lem, since it amounts to a vector quantization (VQ)
codebook design problem. Actually, it can be seen that
matching pursuit compression is a cascade VQ scheme,
where the VQ is of the gain-shape type [1]. However,
the size of vectors we consider is usually much larger
than what is used in VQ (e.g. 64 in the example con-
sidered below).

Assume we have a reasonable dictionary (to be dis-
cussed below) and rate measures r(k;) and r(Q[{(d«,, f)])
. In the above, @ . ] is an appropriate (scalar) quanti-
zation function and r( . ) is the rate or number of bits
used to represent the discrete variable (typically, of the
order of log, L where L is the number of elements, but
note that entropy coding is assumed). Then we can use
the following greedy algorithm. At step n, we have the
current approximation error R,_1f and are searching
for the next best matching vector ¢, _,. Call

TA("/)i) = 7'(3) + T'( Q[(wh Rn-—lf)] ) 3 (4)

the increase in rate if the orthogonalized vector ¥; is
picked. In the quantized case, the new approximation
error, given that ¥; is used, amounts to

Rnf(w't) = Rn—lf - Q[ (wiaRn——lf) ]"/)1 . (5)

Note that R, f is not orthogonal to Q[ (¥:, Rn-1f) J¢:
in general because of the quantization. Call

da(vi) =
= [|Ra-1ifI? — 1Raf0)I?
jad |Q[ ("I)ian-l.f) |2a

the decrease in distortion if ; is chosen. Then, pick
the best vector ¢, such that

da(ii)
ra(ti)’

This gives a rate-distortion optimized matching pur-
suit. We indicate a few generalizations that can be
helpful.

First, one can change the dictionary as the approx-
imation progresses. This is typically done in cascade
VQ. Thus, we have now dictionaries D,,, where possibly
D,, depends on previous choices ¥;,! < n.

Second, we have only considered fitting by sub-
spaces of dimension 1 so far. However, especially in
the compression case, it can be of interest to fit larger
subspaces at once (to be more precise, since we quan-
tize the coefficients of the expansion, we are not gen-
erating a subspace, but only a discrete set of points
on the subspace corresponding to the basis vectors).
A typical example is approximation by transform cod-
ing (e.g. DCT), which is actually a full space fitting

da(¥r,
ra(Vr,

;za ik 0<B<L  (6)

but with coarse quantization. This means that we can
consider, instead of ¢; and ;, subspaces 1; and W;
(where W; is an orthogonalized version of 1;). These
subspaces have both an approximation (which includes
quantization) and a rate attached to them, and thus
can be used in the above algorithm.

4. MOTION COMPENSATED VIDEO
CODING AS MATCHING PURSUIT

As hinted earlier, the difficulty with matching pursuit
for compression is the design of a suitable cictionary.
There is however a very important case were such a dic-
tionary is available, namely motion compensated video
coding. While at first we will simply rephrasz classical
motion estimation/compensation as matching pursuit,
it will become apparent that a number of generaliza-
tions and possible improvements become easy.

Let us briefly recall the classic block motion esti-
mation/compensation followed by DCT corapression.
Given a block of size N by N in the current f-ame, find
a block in the past frame (or the past reccnstructed
frame) that best matches the current block and take
the difference of the two, to obtain a preciction er-
ror. This prediction error is then coded using trans-
form coding. Let us rephrase this in terms of matching
pursuits. A video sequence is a sequence of frames
I(l,m,n) (I, m and n denote horizontal, vertical and
time dimensions, respectively). A block of N by N
pixels from frame n, with upper left corner ut (3, ), is
denoted by Bn(i,j,n) = [I(i,j,n).. . J(i + N = 1,57+
N—1,n)]. The signal we want to code is a current block
in frame n, or fi; = BNy(kN,IN,n). In classic motion
estimation/compensation, the dictionary fo: the first
search is made up of the set {Bn(EN —4,liV — j,n —
1)},4,j € [-m...m). Then a motion vector iy, jm) is
obtained by minimizing || fx;— Bn (kN —1,IN--j, n—1)||
over ¢ and j. This leads to the prediction error signal
ex; = fri—BN(kN —ip, IN —jpm,n—1). This orediction
error is expressed in the DCT basis and quaatized.

Instead, we create a dictionary of normelized past
blocks, or ¢;; = BN(kN —¢,IN — j,n —~1)/||Bn(kN —
i,IN—j,n—1)||, and add the DCT basis {d1, ds, . . .dn2}
together with quantization as an “approximation” sub-

space Vgt That is, our dictionary is D = {¢- m,—m, - - - ®m.m, Vaer

and we have appropriate quantization of the iner prod-
ucts. We can start a matching pursuit. T.pically, a
past block will give a best match, thus

Frt = {Big.jo, F)Piojo + RS- )

The motion vector is usually different from tt e solution
obtained in classic block motion estimation. But

|RifIl < ||fiv — BN(EN — i, IN — jm,n = 1)||, (8)

that is, the prediction error is in general reduced in
a matching pursuit approach. However, we have to
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transmit the value of the inner product {¢;, jo, f). Its
value can be well predicted from the past block since:

(¢io,jmf) = (X-COSﬂ-“BN(kN—io,IN——jg,n—l)”, (9)

where o represents illumination change, and 2 the an-

gle between By (kN —ig, IN—jo,n—1) and By(kN,IN, n).

Note that both a and cos 8 are close to 1.

5. MATCHING PURSUIT AND
PROJECTIONS

The Matching Pursuit framework allowed us to trans-
late the notion of motion estimation and compensa-
tion (MEMC) into the terminology of vector spaces.
Whereas in general matching pursuit one has to find
approximations by a recursive procedure, this is not
necessarily so in the case of MEMC. In general match-
ing pursuit, the recursive procedure of Eq. 3 is forced
by the computational infeasibility of finding in one step
the best linear combination of dictionary elements ap-
proximating the target vector. For the same reason,
subspace fitting, as outlined in the previous section, is
not a feasible option.

In the MEMC case however, the size of the (local)
dictionaries can be very limited. In a number of rele-
vant cases the dictionaries are not even complete. In
such cases, instead of relying on the recursive proce-
dure of Eq. 3, we can actually compute the projection
of the target vector on the span of the dictionary. In the
following sections we will consider 3 scenarios, differing
from each other in the structure of the local dictionaries
and the approximation method.

1. (2m + 1)? previous blocks and MP, or
2. n previous blocks and projection, or

3. n previous blocks, / DCT basis functions and pro-
jection.

The first scenario corresponds to pixel accuracy MEMC
with a search range of m pixels horizontally and ver-
tically, the second scenario corresponds to subpixel re-
finement MEMC, and the third to combined subpixel
refinement MEMC and DCT coding of the residue.

5.1. Scenario 1: Pixel Accuracy MEMC

This section describes scenario 1 in more detail. For
each block in the current frame a collection of (2m+1)?
blocks in the previous (or future frame, depending on
the direction) frame serves as the local dictionary.

In vector space terminology, searching for a pixel
accuracy vector field in the MP sense, amounts to pro-
jecting onto 1 dimensional subspaces. The block B,
that matches best in the MP sense satisfies that a scaled
version aB, is closest to the current block B, for all
possible scale factors and other blocks in the local die-
tionary. Note that block matching MC using an MP
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motion field performs suboptimal. The better perfor-
mance of MPME only becomes apparent when scaled
MC is performed. A typical situation is presented in
Fig. 5.1. The figure shows that spending a few bits on
a scale factor improves the prediction quality, and the
MP field performs better than the BM field, though the
difference can be very slight, depending on the image
sequence.

Scaled Motion Compensation: Pixel Accuracy
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Figure 1: Scaled motion compensation: Block Match-
ing vs Matching Pursuit: solid = block mautching,
dashed = matching pursuit.

5.2. Scenario 2: subpixel accuracy MEMC

This approach of scaling can be extended to subpixel
accuracy vector fields. The usual approach to subpixel
motion estimation consists of two steps: in the first step
the previous frame is interpolated horizontally «nd ver-
tically by a factor 2 using a fixed set of filter coefficients.
In the second step a current block is matched against
interpolated blocks in the previous frame. In tarms of
vector spaces this means that the current bloc« is ap-
proximated by a linear combination of blocks in the
previous frame, where the coefficients are chosen from
a small fixed set. For reasons of computational com-
plexity, the procedure for finding the subpixel a:curacy
motion field is divided in two stages: first finding a
pixel accuracy approximation, followed by a subpixel
refinement.

We can mimic this approach in the matching pur-
suit context. First computing a pixel accuracy motion
field, we choose a local dictionary D = {4;} wh:ch con-
sist of 9 blocks in the previous frame. These are the
blocks less than 1 pixel away from the centrzl block
pointed to by the pixel accuracy vector field. As the
size of the dictionary is very small, we apply projec-
tion to find the best approximation in the span of the
dictionary.



The computation of the projection takes as basic
ingredients (1) the 9x9 matrix M of inner products
(¥:,¥;), and (2) the column vector P = (3);, B.} of in-
ner products of B, with the functions ;. Using the
technique of singular value decomposition we decom-
pose M as M = F'F such that D = F F' is a non-
singular, positive definite, diagonal matrix. Defining £
as £ = D™ F, the coefficients C defining the orthog-
onal projection B, are given by C = Ef E P. Defining
Y as Y = EC, the distance d?(B,, B.) between B,
and B, is given by (B., B.) — (Y,Y). The coordinate
transform E has the nice property that for any block
B in the span of D, specified by coordinates C' = E'Y,
the distance d(B., B) between B. and B satisfies

d*(B., B) = d*(B, B.) + d&*(Y,Y).

In particular this means that the preferred domain
of quantization is not the domain of coefficients C (with
respect to D), but the domain of Y coordinates (or any
orthogonal transform there of). The error introduced
by the quantization Q(Y) of Y is the same as the overall
distortion after reconstructing.

We tested these ideas on the MPEG-4 test sequence
MOTHER. In the experiments performed, we took con-
secutive frames from this sequence, and computed pixel
and subpixel accuracy motion fields. The pixel accu-
racy motion field was used to determine the local dic-
tionaries. The subpixel motion field was used to deter-
mine an initial guess B;. The coordinates of the dif-
ference between B, and B; were uniformly quantized
over a large range of quantizer step sizes. Performance
of coding was measured by computing the first order
entropy of quantized coefficients. Distortion was mea-

sured in dB (PSNR).
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Figure 2: Scaled subpixel accuracy motion compensa-
tion.

A typical curve is given in Fig. 77. In general we
found that the initial part of the curve is very steep.
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One easily gains 1 DB in PSNR by spending less than
3 bits per block.

5.3. Scenario 3: Combined MEMC and residue
coding

In the previous section the local dictionaries consisted
only of motion blocks. In this section we 3nlarge the
dictionary with a small number of DCT basis functions.
The reason for not including a large numter of DCT
basis functions lies in the fact that projections on high
dimensional spaces are computational very expensive.
In a typical example, as used in our experiments, a
local dictionary will consist of 9 motion blocks and 6
low frequency DCT basis functions.

The purpose of this section is to compere the pro-
jection method (with small, mixed local dictionaries)
with the classical method of separate MC and DCT
coding of the residue. In the experiments performed,
we took consecutive frames from the video sequence
MOTHER, and computed pixel and subpixel accuracy
motion fields. Performance of coding was measured by
computing the first order entropy of quaniized coeffi-
cients. Distortion was measured in dB (PSNR). When
comparing bit-rates, the rates associated w th the vec-
tor fields were not taken into consideration, as these
are equal for both methods.

The computation of the projection onto the span of
the dictionary proceeds in the same manner as in the
previous section. There are two minor differences: (1)
the size of the inner product matrix M and the column
vector P are greater and (2) the inner product matrix
has some structure due to the fact that the DCT basis
functions are orthonormal. To be precise, the inner
product matrix has the form

M T
T Id)’

where the matrix T contains the relevant 1DCT coeffi-
cients.

Following the same procedure as the previous sec-
tion, again using the subpixel motion field for an initial
guess we found the following results (see al-o Fig. 5.3):

1. Performing residue coding using only the first 15
DCT basis functions, and performing no quanti-
zation of coefficients in either of the two methods,
the projection method performs considerably bet-
ter than DCT coding.

2. Any good initial prediction of the current block
can be incorporated in the projection method
scheme. We simply apply the transformation E
to this initial guess and use the diff:rence with
the projection block as the data to be: quantized.
In order to perform at least as well as DCT cod-
ing of the residue, subpixel prediction seems to
be the best initial guess.



Projection vs Residue Coding
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Figure 3: Distortion-Rate curves for projection and

residue coding: solid = projection, dashed = residue.

3. When using an equal number of basis functions
in both methods, i.e. keeping only 15 DCT com-
ponents in residue coding, and quantizing the ap-
propriate coefficients, we find that the projection
methods performs better over all possible bit-
rates.

4. Increasing the number of coefficients kept in residue
coding up to all 64, there exists a threshold in bit-
rate beyond which residue coding performs better
than projection coding (with only 15 basis func-
tions). For bit-rates below 15 bits per block, pro-
jection performs better. The improvement over
residue coding can be as large as 1 dB.

Taking the subpixel prediction as an initial guess,
and working in E-coordinates, leaves a residue of which
the components are uncorrelated and approximately
Gaussian. Numerically computing the distortion-rate
curve D(R), we find that rate R, and distortion D, for
component r of the residue are to a very good approx-
imation related by R, = %log(%’;), where o, is the

variance of the rth component.

This observation allows us (at least in principle) to
find the optimal coding scheme for a given bit-rate bud-
get. In the optimal coding scheme all the Y-coordinate
coders are operating at points of the same slope on
their respective R(D) curves.

6. CONCLUSIONS

We have shown that the MP framework allowed us to
translate MEMC techniques into the framework of or-
thogonal projections on low (< 20) dimensional sub-
spaces. We have also shown that in a clean context, i.e.
prediction of frames from non coded, original frames,
the projection method with a small dictionary (9 ME /
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6 DCT) gives a better SNR than separate motion com-
pensation and full blown DCT coding of the residue.
There are of course many remaining issues, three of
which we shall address now.

Firstly, we have not yet applied the techniques as
described above in a real environment, i.e. prediction
of frames from coded frames. The real value of the pro-
posed techniques will only become apparent when we
have done experimental verification in a real environ-
ment.

Secondly, there is a considerable computational re-
quirement on the decoder receiving the data Q(Y). It
cannot immediately reconstruct the image, bu it needs
first to recompute the matrix E. Assuming that no er-
rors occurred in transmitting previous data, -his is in
principle possible as E only depends on inner products
of previous data. The decoder needs to perorm the
following actions:

o Using the motion field, the appropriate ) motion
blocks are retrieved.

o All the required inner products are computed.
¢ The singular value decomposition is derived.
e The matrix E is computed.

An obvious question is whether or not we can do
without the computation of the matrix E. One possi-
bility is finding a fixed matrix Egyeq which is a good
average over all statistically relevant matrices / (as the
DCT is a good approximation of the optimal decorre-
lating matrix). Another possibility is the use of a small
set of fixed matrices £.

Thirdly and lastly, in our experiments we have se-
lected a particular set of DCT basis functions as an
addition to the motion dictionary. For which bit-rate
which set of DCT functions (or any other set of or-
thogonal basis functions) is optimal, is still an open
question.
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