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ABSTRACT

A recent wavelet construction by Geronimo, Hardin and
Massopust uses more than one wavelet and scaling func-
tion [3]. Strang and Strela gave a filter bank interpretation
of that result [6], as well as a condition for moment prop-
erties of the resulting wavelets [7]. In this note, we are
concerned with the regularity of the resulting iterated filter
bank scheme, that is, a matrix extension of the classic result
by Daubechies on iterated filters [1]. We show in particular:

(i} the relation between time-varying filter banks and
multiwavelets,

(i) the construction of multiwavelets as limits of iterated
time-varying filter banks,

(iii) a necessary condition for the convergence of the it-
erated matrix product and

(iv) an exploration of examples of multiwavelets as iter-
ations of time-varying filter banks.

1. INTRODUCTION

Wavelet constructions from iterated filter banks, as pio-
neered by I.Daubechies [1, 2], have become a standard way
to derive orthogonal and biorthogonal wavelet bases, see
e.g. [4]. The underlying filter banks are well studied, and
thus, the design procedure is well understood. Because of
the structure of the problem, certain solutions are ruled out
(e.g. orthogonal FIR linear phase filter banks). By relaxing
the requirement of time-invariance, it is easy to see that
new solutions are possible. Such filter banks are related
to matrix two-scale equations for multiwavelets (3, 6, 7).
It is thus of interest to study the iteration of time-varying
filter banks and their relation to multiwavelets. Note that
time-varying filter banks can be seen as time-invariant filter
banks with more channels (e.g. 2 channel filter banks with
time-variance of period 2 are also 4 channel filter banks).
The outline of the paper is as follows. We review material
on time-varying filter banks and their analysis in Section 2.
Then, Section 3. indicates the construction of multiwavelets
from time-varying filter banks, and Section 4. studies the
infinite matrix product that is central in this construction.
A necessary condition for convergence is given. Finally, Sec-
tion 5. investigates examples of multiwavelet constructions
from time-varying filter banks.
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2. TIME-VARYING FILTER BANKS

It is known that a linear periodically time-varying (LPTV)
filter can be described by a multi-input multi-output
(MIMO) transfer function relating input and output
polyphase components [5]. We concentrate for simplicity
on the case when there are only two different impulse re-
sponses (period = 2), noting that the general case is similar
{except for the size of the transfer matrices). Thus, a period
2 periodically time-varying filter has a polyphase transfer
function given in z-transform domain by:

H(z)= ( Hato) T ) | "

In the above, H; ;{z) denotes the z-transform of the im-
pulse response in phase i of the output to an impulse in
phase j of the input (i,; € {0,1}). That is, both input
and output sequences are decomposed into even and odd
indexed subsequences, and the LPTV filter of period 2 is
now a MIMO linear time-invariant (LTI) with respect to
these subsequences.

We are specifically interested in time-varying interpola-
tion filters, that is, an upsampling function (typically by 2)
followed by a LPTV interpolation filter. In time domain,
the resulting operator (we consider the case of two alternat-
ing impulse responses for simplicity) is given by

gIIEO% 0

] o ...

T= :[2] Ro] o ... |- (2)
g[3] R[1} o0

ol4] A2 0] o0
o5l A3 o] o

where g[k] and h[k] are the two interpolation filter impulse
responses. Clearly, when T is applied to a sequence z[n],
z[2n] and z[2n + 1] lead to impulses g[k —4n] and hik—an—
2], respectively. That is, even and odd indexed samples lead
to different responses, as to be expected. In z-transform
domain, write sequences in terms of even and odd indexed
subsequences, or polyphase components, as

X(2)
Y(z)

Xo(2%) + 271 X1 (27), (3)
Yo(2%) + 27 Vi (2?), (4)
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for the input and output, as well as the filters

G(z)
H(z)

Go(2%) + 27G1(2?), (5)
Ho(2%) + 27 H1(2%). (6)

Then, the polyphase components of Y(z) can be written in
term of the polyphase components of the input X(z) as

Yo(z) \ _ [ Go(z) z7! Ho(2) | Xo(2%)
Yi(z) J ~ \ Gi(z) z7! Hi(2) X (%) |-
Q)
Call the above matrix T(z). Its size is given by the number
of different impulse responses, or period. Note that the z7!
in front of Hi(z) comes from the definition of h[k] is (2),

which is shifted by 2 with respect to g[k]. In the special
case when the filter is time-invariant (h[k] = g[k —2]), T(2)

T(z) = ( g‘l’g; ) (1 ). (8)

Now, it is easy to study iterated LPTV interpolators. Call-
ing the n-times cascade transfer matrix T(")(z)

T(z) = [] T, )

i=0
we get the output, after n-times upsampling and interpola-
tion, as

n _ -1 n 2 X (24)
YM()= (1 27 )Tz )( X:(z‘) ) (10)

Note that there are two impulse responses, given by

G(")(Z) Too(Zz) + Z—1T10(32)1 (11)
H™(2) = To(22) + 27 Tu(2). (12)

As usual, we are particularly interested in the case when
the operator T in (2) is unitary, or TTT = I. Then T(z)
satisfies

T(z) - T(z) + T(-2) - T(-2z) =21 (13)

where T(z) = T7(z7") (we assume real filter coefficients).
The above is a matrix version of the usual Smith-Barnwell
condition for orthonormal filter banks [8, QJ. If T is unitary,
so is T(™). The important point is that g ™[k] and h(™[k]
(the impulse responses of G™(z) and H™(z) from (11))
a{e o{)' unit norm and orthogonal with respect to shifts by
2Am+1)

Note that in the above, we concentrated on the lowpass
channel of a time-varying filter bank. For a unitary trans-
formation, we need also a time-varying highpass channel
that is orthogonal to the time-varying lowpass, as well as
to its own translates. However, for all discussions concern-
ing regularity or iteration, the lowpass channel is the key
element (since that is the channel involved in the infinite
iteration, while the highpass channel is only applied once).

3. MULTIWAVELETS

As in the usual construction of wavelets from iterated filter
banks, we can associate continuous-time functions to the
impulse response of the iterated (time-varying) filter. The
two impulse responses are given by g™[k] and k(™ [k}, and
we associate

¢ (1)
O]

and translates by even integers will be orthonormal, e.g.

2™ /2" << (k4 1)/27,(14)
2" MK k/2" <t < (K +1)/27(15)

< #(8), 47t~ 20) >= 8] (19)

for any finite n.

First, however, we will concentrate on the matrix product
itself, from which, under suitable conditions, ¢§,") (t) and
¢S,")(t) can be obtained.

Associate 4 functions, or one for each entry of T(™)(z).
Actually, for notational convenience, it will be easier to
work with the transpose of T("™)(z), and this using a nor-
malized transfer matrix on the unit circle M(w)

1/v2-TT ()
1/«/5( Gol™)

€7 Ho(e?¥)

It

M(w)

e‘glﬁ(’i:’)“’) )('")
Then, associating piecewise constant approximations with
intervals of length 1/2" leads to

2V (w) = M(w/2)  M(w/4)...M(w/2") -O(w) (18)
where ©(w) is the normalized interpolation function

—jwjentt sin(w/2"™1Y)

Ow)=e w72 (19)
Note that ®(")(w) satisfies
1 @I + 1247 (@)1l = 1 (20)

given that G(z) and H(z) are orthonormal filters (and so
are G (z) and H™(z) in (11-12)).

Also, ©(w) — 1 for any finite w and large n, and can
thus be ignored. In the following, we will be interested in
the limit

Pw) = lim ") (21)
= JIMr2). (22)

Note that )
®(w) = M(w/2) - ®(w/2) (23)

(¢oo(w) $or(w) Y _ [ Moo(%) Moi(%)
#10(w) Su(w) - Muo(3) Mu(%)
)

doo(2) dor(2
( $10(2) d11(%) ) (24)
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that is, a matrix two scale equation. In time domain, this

leads to
9(t) =2  MIK]- o(2t - k). (25)
k

4. PROPERTIES OF THE INFINITE

PRODUCT

In the time invariant case, we know that M{w) which is a
trigonometric polynomial, satisfies the following two neces-
sary comstraints (i) M(0) = 1 and (ii) M(x) = 0. What
are the equivalent conditions in the matrix iteration case?
Call D(w) the determinant of M(w), and {Ao{w), A1 (w)} the
eigenvalues of M(w).

First, ®(0) has to be finite, and thus, neither eigenvalue
of M(0) can be larger than 1 in absolute value. If both
are smaller than 1 in absolute value, ®(0) will be the zero
matrix, which contradicts the requirement that it represents
scaling functions, or lowpass filters. Thus, either 20 (0)] =
[A1(0)] = 1 or [Xa(0)] = 1 and |A1(0)] < 1. For convergence
of the infinite product at w = 0, it is further necessary that
eigenvalues of absolute value 1 are actually equal to 1, since
otherwise, at least one of the entries will not be a Cauchy
sequence. Thus, for pointwise convergence at w = 0, M(0)
has either (i) Ao(0) = A1(0) = 1, that is M(0) = I or (ii)
Ao(0) =1 and |A;(0)] < 1.

Let us now investigate conditions on M(r). We assume
that the infinite product converges pointwise, and want to
see what condition it imposes on M(w). Write

M(w) = M.(2w) + e77“M,(2w) (26)
where M.(2w) and M,(2w) correspond to even and odd
polyphase components of M(w). Also, call M™)(4) the n-
times iteration (this is, up to rescaling and tranposition,
equal to T¢")(2) on the unit circle). Then

M™(w) M(2"'w) - M(2"%0)... M(w)

M) (20)[M. (2w) + €7 M, (2w)](27)

Consider the even and odd polyphase components of
M(")(w),

MV (w)
MM (w)

M("—l)(w) - Me(w),
M (W) - My (w).

(28)
(29)

Associate piecewise constant approximations with unit ele-
ments of length 1/2" in the usual manner, and take the limit
as n — co. That is, w is divided by 2". Then, Mg")(w/Z")
goes towards ®(w/2), as do MU (w/2") and ME=D(y),
On the other hand, M.(w/2") goes towards M.(0), and
M,(w/2") towards Mo(0) for any finite w. Therefore, (28-
29) become

®(w/2) = D(w/2) M.(0) (30)
P(w/2) = PD(w/2) My0) (31)

and we get
B(w/2) - M(0) = B(w/2) - Mo(0). (32)

There are two cases:
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(i) ®(w) has full rank for some w

M.(0) = Mo(0) & M(r) = 0. (33)
(ii) ®(w) has rank 1 for some w
®(w) - [Mc(0) — Mo(0)] = ®(w) - M(x) = 0. (34)

Consider case (i). M(w) satisifies the matrix Smith-
Barnwell condition (13) which we can rewrite as (after
transposition and renormalisation)

M(@)MT(—w) + M(w + O)MT(-~w+ 1) =L (35)
At w =0, since M(x) = 0, we get
M((0)MT(0) = L. (36)

that is, M(0) is unitary, or orthonormal since we assume
real filters. That is, it is a rotation matrix, and in order for
M®™)(0) to converge, M(0) has to be the identity.
Consider case (ii) and (34) at w = 0,

®(0)- M(7) = 0. (37)
Thus, ®(0) is of rank 1, and its rows are colinear with the
left eigenvector ro attached to the eigenvalue Ao(0) =1
(since @(0) = limn—o M™(0)). Therefore, a necessary
condition is

ro - M(r) = 0. (38)
We can summarize our findings so far.
Proposition 3.1
Given an infinite matrix product of size 2 by 2
had .
#(w) = [ M(w/2)) (39)

1

]
-

where M(w) satisfies a matrix Smith-Barnwell condition
(35), a necessary condition for convergence to a scaling ma-
trix ®(w) such that $(0) is non-zero and bounded is

(i) M(0) = I, M(x) = 0 (note: ®(w) has rank 2)

(ii) M(0) has eigenvalue Ao(0) = 1 and [A1(0)| < 1, M(x)
has rank 1 and satisfies ro - M(7) = 0 (note: ®(w) has rank

1)

Ezamples
Case (i)

11 1 Dn(w) 0 1 1
M(“’)‘E(l -1)( k! DM(w))(l —1)

(40)
where Dn(w) is an N-th order Daubechies filter scaled such
that | Dn(w)|® + |Dn(w + 7)]? = 1 (and a similar relation
for Dy (w)). Clearly, (35) is satisfied. Note that M(0) =1
and M(7) = 0 (both properties follow from properties of
the Daubechies filters). The infinite iteration goes to

(41)

O(w) + Brr(w) Bi(w) — Brrw)

P(w)=1/2 ( Bn(w) ~ Brr(w) dn(w) + b (w)



where ®y(w) and ®u(w) are the Nth and Mth order
Daubechies scaling functions. Note that ®(w) has rank 2
almost everywhere.

Case (ii) (see (8))

1

M(w):( e—iv )( Mo(w) M;(w) ) (42)

where Mo(w) and M;(w) are the polyphase components of
an Nth order Daubechies filter. Note that

111 1/ 1 1
5(1 1), M(r)=§<_1 _1) (43)

M(0) has eigenvalues {1, 0} with left eigenvectors {1,1} and
{1,-1} and thus, the left eigenvector with eigenvalue 1 is
indeed orthogonal to M(x). The infinite product then be-

comes
) (44)

as to be expected, since this is a time-invariant case with
Daubechies filters. This is clearly a rank 1 matrix.

Note that the rank 1 case is important in the multiwavelet
constructions that will be seen below. That is, ®(w) will

be of the form
)- (52 258).

( doo(w)  Po1(w)

$10(w)  ¢11(w)
where ¢ follows from the dominant eigenvector of M(0).

MULTIWAVELETS FROM ITERATED
LPTV FILTER BANKS

An orthogonal time-varying filter bank with the two low-
pass filters g[n] = 1/5 - [3/v/2,4,3/v/2) and h[n] = 1/10 -
[~1/2,-3/+/2,9/2,10/v/2,9/2, —3/+/Z, —1/2] is given in [6]
and corresponds to the coefficients (with renormalization)
of the multiwavelet two scale equation in [3]. The resulting
matrix M(w) has entries

M(0)

dn(w/2) Pn(w/2)

P(w)=1/2 ( e—;w/2¢N(w/2) e—JwﬂQN(w/Z)

da(w)
Po(w)

c- da(w)
¢ pp(w)

5.

3 5w 22
Moo(w) = ﬁ].(1_!_3 ) Moy (w) = T\/_ (46)
Mlo(w) = ﬁ(_l +9e7Y + ge—sz _ e—j3wx47)
Mial) = g5(-3+ 1067 ~3e77%) (48)

The matrix M(0) has eigenvalues 1 and —1/5, and the left
eigenvector with eigenvalue 1 is ro = [v/2,1]. The matrix
M(x) has rank 1, and ro - M(x) = 0, thus verifying the nec-
essary condition. The iterated product actually converges
to continuous functions ¢, and ¢s, as shown in Figure 1
(the value of c is (45) is 1/v/2).

Note that because of the constant c¢ in (45), the two
polyphase components of the iterated filters G(™ (z) and
H(z) converge to functions of the same shape, but with a
different multiplicative scaling factor c. Thus, before merg-
ing the two polyphase components, this factor has to be cor-
rected, otherwise the impulse responses ¢{™[k] and h(™)[k]
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Figure 1: Iteration of a regular 2 by 2 matrix. The matrix
in (46-48) converges to four symmetric functions, two of
which are simply scales of the two others.

oscillate at the maximum frequency. This problem does not
appear if M(0) has dominant left eigenvector [1,1] or ¢ = 1.

We can use the method of invariant cycles of the map-
ping w — 2w (mod 2x) to find lower bounds on regularity
[2]. These are now based on the eigenvalues of the matrix
products in the cycle. For the matrix above and w = 27/3,
we have the invariant cycle {27/3,4x/3}. The eigenvalues
of M(e?™/2). M(e’*™/%) are 0.01 and 0.0625, which can be
used to show that the scaling functions are nondifferentiable
by lower bounding the decay of the Fourier transform.
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