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ABSTRACT

We discuss the concept of set theoretic compression where
the input signal is implicitly encoded by the specification
of a set which contains it, rather than an estimate which
approximates it. This approach assumes the reconstruc-
tion of an estimate from the encoded set information only
at the decoder side. We explain the motivations of this
approach for high signal compression and encoding simpli-
fication, and the implication of more complex decoding. We
then present the tools to support the approach. We finally
show a demonstration of this approach in a particular ap-
plication of image coding.

1. INTRODUCTION AND CONCEPT

In signal coding, one thinks of the encoded version of an
input signal as an approximation of this signal. Signal com-
pression is achieved by forcing the samples of this approxi-
mated signal to have values on a finite set of quantized lev-
els. In this paper, we introduce a different approach to sig-
nal coding, called set theoretic coding. With this approach,
the role of the encoder is to give a digital description of a set
of signals which contains the input signal. In other words,
the information which is encoded is a set, not an estimate.
The reconstruction of an estimate of the true signal is left to
the decoder, given the set information. This new approach
has two contributions: (i) it gives an interpretation of signal
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Figure 1: Set theoretic presentation of the simple quantiza-
tion of an n-point sequence.
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coding which is actually valid for all coding schemes; (ii) it
allows new types of coding schemes and indicates new ways
to achieve signal compression.

In Section 2 and Section 3, we develop these two points
respectively. In Section 4, we discuss the application of set
theoretic coding to image compression. In Section 5, we give
in the area of block DCT coding of images a first demonstra-
tion of coding scheme derived from this new approach. In
this paper, importance is given to the conceptual discussion
of set theoretic coding. However, with the demonstration
of Section 5, we also give two appendices containing mathe-
matical descriptions and analytical manipulations including
a theorem.

2. SET THEORETIC INTERPRETATION OF
CLASSICAL CODING

In fact, the set theoretic view gives an interpretation of the
actual information which is encoded in any coding scheme.
Figure 1 shows an example of coding system which consists
of the direct amplitude quantization of an n-point sequence
X = (21,22, ...,2a). In the traditional view, the output bi-
nary sequence B = (41, ...,bn) gives an encoded description
of an approximated version of X, that is the sequence of the
quantized values X = (£1,...,&n). In fact, the precise and
complete information available from B is that the samples
£1,...,Zn of X belong by necessity to certain quantization
intervals of R, implying that X must belong to a certain
hypercube C(B) of RY (see Figure 1). This is nothing but
the set theoretic description of encoding. The hypercube
is the encoded set. The corresponding decoding part tra-
ditionally consists of reconstruction the quantized signal X
from the binary sequence B. In fact, X is nothing but the
geometric center of the hypercube C(B). In the set theoretic
view, the traditional decoder appears to pick the geometric
center of the encoded set as a reconstruction of X. This
reconstruction has the property to minimize the expecta-
tion of the mean squared error in the case where the input
signals have a uniform probability distribution.

The set theoretic approach is also applicable to coding
systems where a linear transform of the input is quantized,
instead of the input itself. This is the case of block DCT
coding, whose principle is symbolized in Figure 2. The out-
put binary sequence B gives precisely the information that
the DCT transform Y = DCT[X] of X belongs to a hy-
percube of R¥. This implies that X must belong to the



set obtained by inverse DCT transform of the hypercube
(see Figure 2). It also appears that the traditional decoder
picks the geometric center of C(B) as reconstruction of X.
Indeed, this decoder usually takes the inverse DCT trans-
form X of Y which is the quantized version of Y. As in
the previous case of simple quantization, ¥ is the geomet-
ric center of the hypercube which contains Y. Because the
DCT transform is unitary, it conserves the distance. There-
fore, C(B) is also a hypercube (of same size but rotated) and
X is necessarily its center (see Figure 2).

Usually, when the quantization resolution is fine enough,
this choice of reconstruction is satisfactory and the set theo-
retic analysis can be omitted. However, in the case of coarse
resolution, typical of high signal compression, significant ar-
tifacts start to appear between this proposed estimate and
the true signal. In the example of block DCT coding with
coarse quantization, it appears that choosing the center of
the encoded hypercube as estimate yields blocking artifacts
which don’t exist in the original signal. This is a situation
where one should start using the complete set information
available. This approach has already been considered in
several recent papers [1, 2, 3] where the search for a differ-
ent estimate in the hypercube with less blocking artifacts is
proposed. In [1, 2], the reconstructed image is the element
of the hypercube which minimizes a certain highpass energy
function. In [3], two reconstruction schemes are proposed
which both give an estimate within the encoded hypercube.
The first scheme gives an estimate of the hypercube which
minimizes the distance with a certain “estimated” set of
smooth images!. The second scheme gives the estimate of
the hypercube which minimizes a certain regularization en-
ergy.

All these improved reconstruction schemes show the po-
tential of using the full encoded set information.
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Figure 2: Set theoretic presentation of the DCT encoding

of an n-point sequence.

3. DESIGN OF NEW CODING SCHEMES

Choosing an estimate different from the center of the en-
coded set is a first step for coding innovation. A second

1 The minimum distance is zero in the case where the esti-
mated set turns out to have a non-empty intersection with the
hypercube.

step for more radical innovation is to change the definition
of the set itself. As seen in the previous paragraph, the en-
coded set resulting from a traditional coding scheme may
include some undesirable estimates, such as its very center
in the example of block DCT coding. Improvement can be
achieved if the set to be encoded is directly designed so that
all its elements are satisfactory estimates of the true signal
with respect to the considered artifacts.

At first sight, this may imply more complex encoding.
However, one should keep in mind that encoding a set is
less constrained than encoding an estimate since a set only
gives an implicit information about the input signal. As a
result, more freedom and more possibilities are given to the
encoding part. The price to pay may be a more complex
decoding part since an estimate has to be retrieved from
the implicit set information.

The advantage of implicit set encoding is particularly
important when dealing with input images containing sev-
eral features of various perceptual nature, such as texture,
edges and low frequency variations. While it is in general
difficult to encode directly an estimate which reproduces
simultaneously all the desired features, a set of estimates
satisfying these features can be simply and implicitly de-
fined as intersection of the sets characterizing each feature
respectively. Then, using separate subencoders for each fea-
ture is sufficient to give implicitly the description of the in-
tersection set. One big advantage is that there is no need to
perform combined processing of the subencoders’ outputs,
and the subencoders themselves can be designed separately,
using techniques specific to the corresponding feature (think
of the difference between encoding edges and encoding tex-
ture).

The work of combination is only performed at the de-
coder side. It simply consists of retrieving an estimate
which belongs simultaneously to the sets described by the
subencoders’ outputs respectively. While feature combina-
tion is performed in conventional coding systems using lin-
ear combination, overlapping or segmentation techniques,
feature combination in set theoretic coding is of logic na-
ture since the intersection operation is based on the logic
operation “and”. For the design of the decoder, tools which
have been developed in the field of set theoretic estimation
[4] can be typically used to retrieve estimates from set the-
oretic information. For example, when the sets involved in
the intersection are convex, an element of the intersection
can be reconstructed thanks to the classical algorithm of al-
ternating projections onto convez sets (POCS) [5, 4]. This
algorithm has been used in [3].

Another advantage of the set theoretic design is that
the mappings involved in the encoding process need not be
limited to linear transformations. For example, as will be
seen in Section 5, non-linear functions such as quadratic
functions can be used to encode a set.

4. RATE-DISTORSION RELATION AND

IMAGE COMPRESSION

In set theoretic coding, the link between the input signal
and the reconstructed signal lies in the encoded set which
contains both of these signals by design. Therefore, a mea-
sure of quality of the set encoding is the maximum distor-



sion existing between any two elements of the set, or, the
size of the set with respect to the distorsion measure. Thus,
the classical notion of rate-distorsion relation still exists. It
is the relation between the number of bits needed to encode
the set and the size of the set. Obviously, the smaller the
size is, the more bits will be required.

Now, a potential contribution of set theoretic coding
to image compression is its ability to deal with distorsion
measures of perceptual nature. Indeed, sets can be more di-
rectly constructed according to functions derived from per-
ception models, which may be non-linear or may be empiri-
cal. Therefore, a better image compression may be achieved
because, for the same bit rate, the encoded set is better
adapted to the desired perceptual features and thus, leads
to reconstructed images of higher subjective quality. An
example of such situation will be given in the next section.
In general, better image compression may be achieved by
a more refined bit allocation with respect to the desired
perceptual features.

5. AN APPLICATION TO IMAGE CODING

In this section, we show a demonstration of the set theoretic
approach applied to block DCT coding. While this encod-
ing scheme manages to preserve a good image quality within
each block, even at relatively low bit rate, the missing in-
formation about the transition of the original image across
the block boundaries becomes critical. At the given total
bit rate of 0.41 bit/pixel, we propose to reshape the encoded
DCT set by giving less priority to the image quality within
each block and include some information about the block
boundary transitions. We do this by allowing some increase
in the size of the DCT hypercube set leading to a new set Co,
and then taking its intersection with another set S contain-
ing some information about the block boundary transitions
of the original image. In the present experiment, we split
the bit rate of 0.41 bits/pixel into 0.39 and 0.02 bits/pixel to
encode Cp and Sp respectively. This image block boundary
information is acquired using a quadratic function applied
to the neighboring region of each block boundary, inspired
from [3]. The detailed description of this function and the
resulting definition of So are given in Appendix I. Assuming
that Figure 3(a) represents the DCT hypercube set, Figure
3(b) represents the reshaped encoded set Co N S.

This reshaping operation implies the use of an extra
encoder computing the quadratic function. The detailed
description of this encoder is given in Appendix L. Figure 5
shows the experimental results obtained on a part of Lenna
image (Figure 4). Figure 5(a) corresponds to the classical
DCT encoding and decoding. Figure 5(b) shows an esti-
mate of the reshaped set, obtained by alternating projec-
tions between the two encoded sets. The details of these
projections are given in Appendix II. While some slight
degradation may be observed inside certain blocks of Figure
5(b) compared to Figure 5(a) (ringing artifacts for exam-
ple), the reduction of blocking artifacts in Figure 5(b) has a
predominant visual impact , thus leading to a globally more
“pleasing” image. Philosophically speaking, improvements
can be achieved for the same bit rate by a more balanced
encoding of the features according to their visual impor-
tance.
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Figure 3: Representation of encoded sets. (a) Classical en-
coding (ex. block DCT). (b) Encoded set reshaped by in-
tersection (Co N Sp).

Further improvements may be obtained by working on
the decoding part as in [1, 2, 3]. Indeed, in the above ex-
periment, the alternating projections were used to extract
at least one estimate from the encoded set Co N Sy. Tech-
niques derived from [1, 2, 3] can be used to find a better
estimate within the encoded set Co NSy, with regularization
properties for example.

6. CONCLUSION

The previous section gives a concrete illustration of cod-
ing manipulations and improvements resulting from the set
theoretic approach. A conventional encoder (block DCT)
was used as initial illustration. However, the purpose of the
set theoretic approach is to motivate the design of a new
class of coding schemes for image compression. The above
example already shows the potential of this approach for
the encoding of perceptual features and the resulting appli-
cation to image compression.

7. APPENDIX I : DEFINITION THE SET S,
AND ENCODING

For the sake of simplicity, let us assume that the image X
is only composed of two 8 x 8 blocks, with a common verti-
cal block boundary, as shown in Figure 6. To evaluate the
degree of discontinuity of the image X at this boundary,
we propose first to look at the evolution of the pixel values
along each of the 8 lines. Precisely, for the i*” line, we ex-
tract the row B of the 8 pixel values neighboring the bound-
ary (see Figure 6), and we calculate the weighted average



B;-U7T, where U is a predefined row vector of eight weights.
These weights should be chosen in order to amplify the dis-
continuities specifically localized at the boundary. We have
chosen U = [1,2,3,4,~4,-3,-2,—1]. Then, we evaluate
the global image discontinuity accross the vertical bound-
ary by calculating the energy £(X) = Z?:l(B‘ SUTY. A
similar but simpler version of boundary discontinuity func-
tion was previously introduced in [3] using the weighting
vector U = [0,0,0,1,—1,0,0,0].

For a given input signal Xo, if £(Xo0) < Q where Q is a
known value, we know for sure that Xo belongs to the con-
vex set’ § = {X / £(X) £ Q}. To encode the information
of the original image boundary discontinuity, we propose
to calculate £(Xo), quantize this value into Qo such that
Qo > £(Xo) and take Qo as output of the encoder. The
output (o gives the information that Xo necessarily be-
longs to the set of estimate So = {X / £(X) < Qo}. In
the general case of an image of any size, So will be charac-
terized by a complete set of quantized scalar values which
correspond to each block boundary, including the vertical
and horizontal boundaries.

8. APPENDIX II : DESCRIPTION OF THE
CONVEX PROJECTIONS ON C; AND S,

The convex projection on the hypercube Co has already
been derived in [1, 3]. We will only point out that, be-
cause the DCT transform is unitary, and thus conserves
distance, X' is the convex projection of X on Cp if and only
if Y’ = DCT[X'] is the convex projection of Y = DCT[X]
on the set DCT[Co] (see Figure 7). If we call P the operator
of convex projection on the set DCT[Co], this implies that
X' = (DCT~! o P o DCT)[X] (see Figure 7). Now, P has a
trivial implementation because the set DCT[Co] is a hyper-
cube parallel to the canonical axes. The convex projection

Figure 4: Original image.

2The convexity of S is due to the convexity property of £(X).
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(b)

Figure 5: Encoding and decoding of the image of Figure
4 at the bit rate of 0.41 bit/pixel. (a) Conventional DCT
method. (b) Estimate picked from the reshaped enoded set
(see Figure 3(b)).



on the set Sy is derived as follows. Suppose that the images
have the size as in Figure 6. For an image X, let us call the
boundary matrix of X, the 8 x 8 submatrix B whose row
vectors are B, ..., Bs.

Theorem 8.1 If X ¢ S, the convez projection of X on So

TS 1) B-M,
where M is the fized matriz defined by M = %7—;7?'

Sketch of the proof: Whether Y is a vector or a matrix,
let us denote the squared sum of its elements by ||Y|[>. By
definition, the convex projection of X on Sy is the element
X' which minimizes || X’ — X||? subject to the constraint
X' € So equivalent to £(X’) < Qo. In fact, because X ¢
So, the solution X'’ to this problem necessarily satisfies the
equality constraint £(X') = Qo. It is obvious that only the
pixels of the boundary matrix B of X are involved in this
problem. Consequently, the solution X' differs from X only
by its boundary matrix B’, and the problem is to minimize
| B'— B||? subject to £(X') = Q. Let B! be the row vectors
of the matrix B’. We have ||B' — B||* = ELI B! - Bi||*.
One should first show that, in order for the matrix B’ to be
the solution to the minimization problem, the row vectors
B{ — B; must be parallel to U for all i =1, ...,8. The hint is
to see that adding to B} any component perpendicular to U
will not affect the function £(X’) involved in the equality
constraint. Then, we can introduce the notations B! — B;
XU, Bi = Bi-UT and define the row vectors X = [As, ..., As]

and § = [B1,...,B8). Because we have
8 8

IB' = BIF = YIB! - Bil* = >_ X |UII* = |[U|*|IX)?

=1

is obtained by adding to B the matriz (

i=1
and

£(X")

8 8
D BLUTY? =Y (B UT + AU - UT)
=1

i=1

8
> B+ MUIPY = 1B+ 10IPK|,
i=1

. e . I . = TH?
the problem is to minimize ||A]|* subject to ",6 + ||U||2,\L| =
Qo. It can be easily shown that the solution to this problem
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Figure 6: Calculation of the “energy” £(X) of discontinuity
accross the vertical boundary between two blocks.
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Figure 7: Convex projection on the DCT encoded set Cp.

s Q@ N\ B oy
is A= (3% 1) o which implies that
T .
A= (/o= 1) B forall i = 1,....8. From B} -

. _ ) - uT.
Bi; = \U, we obtain B,!-B,+( F(Q)%S—I)B"TUTSJ'

which implies that B = B + (, [ - 1) B.-M O

For an image of any size, the global projection on Sp
consists of locally and successively perform the operation of
Theorem 8.1 on each block boundary of the image estimate,
using the respective encoded value Qo and the respective
energy function £(X).
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