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Abstract

Recent work has been devoted to optimal signal re-
construction in LA modulation. Classically, using lin-
ear filtering, the reconstruction mean squared error
(MSE) asymptotically decreases with the oversampling
ratio R in R—(®"+1) where n is the order of the mod-
ulator. Using some non-linear reconstruction scheme,
an improvement on the MSE asymptotic behavior by 3
dB per octave of R has been recently observed on time-
varying, periodic and bandlimited input signals. This
implies an MSE in O(R~C"+2). In this paper, we
show for the multi-loop configuration of LA modula-
tion and the same kind of input signals that the asymp-
totic behavior of the reconstruction MSE cannot be less
than O(R~(*"*+2)) including optimal reconstruction.

1 Introduction

Signal reconstruction in £A modulation is usually
performed by a linear filtering of the output bit stream
[1]. The idea is to cancel the high frequency compo-
nents of the shaped quantization noise. Thus, in the
first order TA case, the mean squared error (MSE) of
the remaining noise can be reduced by 9 dB per octave
of oversampling [1]. In other words, the asymptotic
behavior of the MSE with respect to the oversampling
ratio R is of the order of O(R~3%). In the n** order
case, the MSE decreases by 3(2n + 1) dB per octave,
using linear filtering {2, 3]. The corresponding asymp-
totic behavior is of the order of @(R~(?7+1),

It was recently shown in [4] that linear filtering is
not optimal in the case of constant inputs. However,
although improvements in the MSE reduction were ob-
served with an optimal reconstruction, the asymptotic
behavior is still of the same order, that is O(R™(2n+1)),
and was in fact shown to be a lower bound on the re-
construction MSE.
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Yet, it was numerically observed in [§] that optimal
reconstruction ylelds an improved asymptotic behav-
ior as soon as the input signals are time varying. In-
deed, a non-linear reconstruction scheme introduced
in [5] applied on time-varying, periodic and bandlim-
ited input signals experimentally yields an asymptotic
behavior of the order of @(R~(?"+2)) which represents
an improvement of the MSE reduction by 3 dB/octave.
In this paper, we show that this achieved asymptotic
behavior is in fact a lower bound to the reconstruction
MSE, for time-varying, periodic and bandlimited in-
puts applied to an n'? order multi-loop ZA modulator
(see Figure 1).

1hr

Figure 1: Block diagram of n-loop XA modulator

The proof is based on a vector quantization ap-
proach of £A modulation. Indeed, periodic and ban-
dlimited signals necessarily belong to a finite dimen-
sional space and can be considered as vectors. Thus,
a ¥A modulator intrinsically defines a partition of the
input vector space (Section 2). Assuming no quantiza-
tion overloading, we show that this partition has the
structure of a “hyperplane wave partition” (Sections 3
and 4). Thanks to this structure, an upper bound to
the density of cells can be derived (Section 5). Using
the work by Zador [6], a lower bound on the MSE is
deduced. Its expression with respect to R gives the
order O(R~(237+2)) (Section 6). Finally, in the case of
overloading, we explain qualitatively why this lower
bound is still valid (Section 7).



2 Vector quantization and partitioning
approach

Optimal reconstruction was first introduced in A
modulation in the case of constant inputs in [4]. In
this context, it was shown that the intrinsic behavior
of a £A modulator is to define a one-to-one correspon-
dence between intervals of constant amplitude values
and the possible output bit streams. In other words,
the encoding behavior of a £A modulator is charac-
terized by the partition it defines in the space of input
signals, which is one dimensional in the case of con-
stant inputs. Optimal reconstruction simply consists
in picking the center of the interval corresponding to
the given output bit stream.

In this paper, we study the intrinsic behavior of
a LA modulator for time-varying, periodic and ban-
dlimited signals. Precisely, the signals we consider are
defined and encoded on a time window [0, 7] and have
the following finite Fourier expansion:

P
()= X1+ X2iV2Zcos (2mid) +X2i41v2sin (2mik) .

i=1
(1)
Writing W = 2p+1, z(t) belongs to the W dimensional
space generated by the basis (u;(t)); ;< Where

ul(t) = 1
. ui(t) = V2cos(2mik) (2)
vi Z 1, { U2,'+1(t) = \/5811](271’1%)

There is a one-to-one mapping between z(¢) and the
vector £ = (X1, X»,..., Xn) of RY. Therefore, z(t)
belongs to a W dimensional space.

As in the previous simple case, a ¥A modulator
defines a partition of the input space where each cell
comprises all input signals producing the same output
bit stream. Figure 2 shows the partition defined by
a single-loop ©A modulator on the space generated
by (uz(t),us(t)). In the partitioning approach, it is
important to see that the possible output bit streams
have the function of “labeling” the cells. Then, as
a known result in vector quantization [7], the opti-
mal reconstruction of the input consists in picking the
centroid of the corresponding cell. The MSE perfor-
mance of the optimal reconstruction will give a lower
bound on the reconstruction MSE in general. Thanks
to the norm conservation fOT lz(t)* dt = Ezl 1)
which can be easily verified, the MSE can be entirely
evaluated in the vector space R" using its canonical
norm.
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Figure 2: Partition defined by a single-bit single-loop
YA modulator on the space of sinusoids of arbitrary
phase and amplitude, sampled 12 times in [0, 7]. The
circle represents the no-overload region.

3 Analysis of the encoding process

Before deriving the partition defined by a multi-
loop £A modulator, we need to formalize the encoding
process. It is composed of the sampling and followed
by the XA encoding of the sampled values. We as-
sume that z(t) is sampled N times in [0, 7]. Because
an input is characterized by W values X;, X, ..., Xw
according to (1), R = —3{,— represents the oversampling
ratio. The N samples are denoted by (z;,z2,...zN).
and are such that = = :c(%T) These samples can be
directly expressed as a function of the vector & corre-
sponding to z(t). Indeed, let us define the following
vector of RV

fo = (w(ET), ua(ET), ouw(£T)),  (3)

and denote the inner product of RW by (Z,4) =
YW X;Y;, where X; and Y; are the it" components
of Z and §. Then, using (1), (2) and (3) we have

w
Ty = ZX,' u,(—]’:—,-T) = <.’i", fk> . (4)
i=1
Therefore, the whole encoding process can be repre-
sented as in Figure 3 where (by, ba, ..., by) is the output
bit stream.

Concerning the XA encoding, we assume that the
quantizer (symbolized in Figure 1 by ‘ADC’) is uni-
form with a step size ¢. The transfer functions of the
quantizer and the feedback D/A converter (symbol-
ized in Figure 1 by ‘DAC’) are represented in Figure



(by.by,-...by)
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—
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Figure 3: Representation of ZA modulation with vec-
tor input
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Figure 4: Transfer functions of built-in quantizer and
D/A converter

4. Although the output of the quantizer is an inte-
ger, it is not so much the nominal value of this integer
which matters, but its symbolic value as a codeword.
We assume for now that no quantization overload-
ing occurs during the encoding process. In this situ-
ation, the transfer functions of the quantizer and the
D/A converter can be mathematically expressed as

ADCly} = [%J and DACPl=q(b+1), (5

according to Figure 4, where |w] denotes the largest
integer which is lower or equal to w.

Based on these definitions, we show in the appendix
that the block diagram of Figure 1 is entirely equiva-
lent to that of Figure 5 where |-| denotes the operator
which maps w into {w]. In this figure, for a given or-
der n, v,(c") is a deterministic sequence which does not
depend on the input z; and is recursively defined with
n as follows: Yk > 1, v;;o) =Qandforp=1,...,n
y(()p) (r)
T-—b[) and Vk > 1, v

v,‘c‘"l”.

(6)

In this definition, y{” is the initial value of the p'*

accumnulator of Lhe LA modulator and by = ADC[y§"]
(see Figure 1). Also, the n integrators in the equiva-
lent diagram are initialized to zero at k = 0.

We propose now to give the exact content of the
block diagram of Figure 3. Equation (4) gave us the
direct expression of zj in terms of the input vector Z.
This permits the direct expression of z; (see Figure 5)
in terms of . Indeed, in the single-loop case (n = 1)

for example, we have:
k

o5 ()
(

P) __ (p—1})
Uy + Ve

Jj=1
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where dj, = ZJ -1 f] and Cy = ZJ 1” . In the n*?
order case, 1t is easy to show that (7) is still valid with

Jja  Ja
di = Z Z Zf: (8)
]n—l Ja=1j5=1
Jja Ja
and Cx = Z Z Zv "~
J"'=1 12_1.7_1

Then, combining equation (7) and Figure 5, the whole
encoding process of Figure 3 has the block diagram of

Figure 6, where <J:, ‘>—Ci denotes the operator which
maps T into <rf,,i:'> - C;.

4 Derivation of the partition

The partition defined by the encoder of Figure 6
is basically due to the quantization operator |-|. The
portion of the block diagram, called “partitioning sec-
tion”, alrcady defines a partition of the input space,
where each cell is labeled by a possible sequence of
discrete elements (a;, as, ..., ay) output by the opera-
tor || (see Figure 6). The next portion of the block
diagram, called “discrete section”, only works as map-
ping from (a1, az, ..., an) to (by, ba, ..., by) which is also
a sequence of discrete elements. One can easily ver-
ify that this mapping is a one-to-one correspondence.
Therefore, it can be interpreted as a simple “relabel-
ing” operator. Then, the partition respectively defined
by the partitioning section and the whole encoder are
necessarily the same, where the only difference lies in
the label associated with each cell.

The partitioning section has a structure which has
been recently studied in [8]. It was shown that this
structure yields a type of partition, called “hyperplane
wave partition”, which has the following features:

(i) - the cells are formed from the division of the

space by non-interrupted hyperplanes,

(ii) - these hyperplanes are perpendicular to d, ds,

, or dN
(iii) - the hyperplanes perpendicular to a given vec-
tor dy, are equally spaced with a distance equal
to 1/dk, where di = (Il
These properties can be observed on the partition of
Figure 2 in the no-overload region.

5 Upper bound on the number of cells

Thanks to the properties of hyperplane wave par-
titions, an upper bound on the number of cells was
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Figure 5: Equivalent block diagram for an n-loop £A modulator in the case of no overloading (see appendix)
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Figure 6: Vector quantization block diagram of an n-
loop ¥A modulator

derived in [8]. This upper bound is given as follows:

Proposition 1 Let M be the number of cells defined
by the partitioning section of the encoder of Figure
6 within a region of RY of diameter D and d =

max(dy, ds, ...,dn). Then
N w
M< (W) {(Dd +2) 9)
From (9), let us derive an upper bound for N
asymptotically large. We first have ({Y,) =

N(N-1).. (N Wit1) < N . Then, we recall that dj =

Using definitions (3)

lldi ]l where dy is glven by (8).

and (4), we have

k Ja  Ja2
2 T2 A
di = |ldi|l” = QZ Z Do D ulnT
i=1l |ja=1 jo=1j=1

Using the fact that |ui (%T)| < V2 and Vk < N,
Zf,-r-- §2=1 72 1< k™ < N™, we find that d2 <

|\/_N"| Therefore, d < Y2 N Then, from (9)
we have for N asymptotically large:

w
NW D — . N\ (D \/zv

(10)
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6 Derivation of the MSE lower bound

We assume that the input signals z(¢) have a stan-
dard deviation bounded by o in the time window
[0, T]. Using the norm conservation formula, this im-
plies that the associated vector & is confined in a region
of RY of diameter D = 20. Let us call p the proba-
bility distribution of the vector ¥ within this region.

Zador showed in [6] that the optimal reconstruction
MSE can be lower bounded when the number M of
cells defined by the given encoder is known. When M
is large enough [8], he showed that

MSEup > C(W,p)- M~V

(11)
where C'(W, p) is a coefficient which only depends on
the dimension W of the input space and the proba-
bility distribution p of the input vectors. When the
encoder is a multi-loop £A modulator, M is upper

bounded as in (10). Then, we obtain from (11)

2 Wr/w
MSE,p > C(W,p) (i)

D 2W  N2n+2’
Using D = 20 and N = R- W, we derive that
. g\? 1 .
MS[’/opg Z C(W,p, n) (;) —W, (12)

w/w

where C(W,p,n) = gz C(W, p) which only de-

pends on W, p and n.

The inequality (12) shows that the order
O(R~(27+2)) is asymptotically a lower bound to the
reconstruction MSE.

7 Case of quantization overloading

In reality, the output of the quantizer is limited to
a finite number of integers, from byin t0 byar. Over-
loading occurs when the input y of the quantizer is
such that [y/¢]| is outside the range bpmin,-.., dbmas-
The quantizer behaves as if the function || was fol-
lowed by a many-to-one integer mapping which assim-
ilates every integer larger than b,,,; with b4, and



every integer smaller than b,,;, with b,,;,,. It can be
derived that the equivalent block diagram of Figure 6
remains valid when including in the discrete section
an extra many-to-one mapping of the discrete element
sequences. The only possible effect on the overall par-
tition is the merging of certain cells with each other.
This can only decrease the effective number M of cells
in a given region. Thus, the upper bound of (10) holds.
So does the MSE lower bound.

8 Appendix: Structure equivalence of
multi-loop ¥A modulation

The equivalence between Figures 1 and 5 is based
on definitions (5) and (6), and on the following propo-
sition:

Proposition 2

Vk > 1,

(13)

Sketch of the proof: We perform the proof by induc-
tion on n, using the recursive block diagram of an
n-loop £A modulator from [3], as shown in Figure 7.
Using the signal notations of this figure and definition
(5), one can derive that

E Al G RO YN

In the case n = 1, the (n — 1)-loop EA modulator is
reduced to a quantizer. Therefore, b; = |y{’/q]. In
general, if A, B € R such that B is an mteger then

(ﬁ (

A+ B] = |A] + B. Because 3_; kol b; is an integer,
then (14) implies that
(1 koo (1) k-1
9 Jj=1 q 7=1
(15)
1) by
-loop
ZA
DAC

Figure 7: Recursive block diagram of an n-loop LA
modulator [3]
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k k
Using (6), this gives ij = Z ( . v;‘))

Jj=1 J=1
which proves (13) for n = 1. To prove (13) for n > 2,
the procedure is to assume that (13) is true for the
(n—1)-loop A modulator included in Figure 7. This
gives an expression of (13) at the order n — 1, where
the input x; is replaced by y"" In this expression, in-
ject the expression of y; (" /q given in (14). This leads
to equation (13) at the “order n O
Let us define z; = Z_?..:l 33=1 ;’ 1 (fl v}“’)
and a; = |z |. The computation of z; and ax can be
indeed represented as shown in the block diagram of
Figure 5. Because of (13), ax is the n** order discrete
integration of the sequence b;. Therefore by can be

obtained by a n** order discrete differentiation of ay.
Thus b is the output of the block diagram of Fig. 5.

z;
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