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ABSTRACT

Transmission of layered information over power-constrained
channel is considered. We address the question of power
allocation policy where the goal is to minimize the over-
all end-to-end distortion. A layer containing significant in-
formation is more heavily protected against channel error
through allocating more power to that layer. We define
an appropriate coding gain and show that the KLT is the
best unitary transform in the sense of maximizing this gain.
Furthermore, we look that the embedded transmission of in-
formation and compare this method to orthogonal methods
such as multi-carrier transmission. We also consider end-
to-end distortion optimization for broadcast channels.

1. INTRODUCTION

Layered coding has proven to be an important concept in
transmission of information over channels with time-varying
impairments. In layered coding, the input signal is split
into two or more streams where each stream can now be
treated separately. For example, different streams can be
protected differently against errors caused by the channel
noise leading to what is known as unequal error protection
(UEP). Also, if the current channel status is available to the
transmitter then using this side information only a fraction
of the layers can be transmitted at a time [1].

In the case of channels where the power is the main
constraint (e.g. wireless channels), unequal error protec-
tion of each stream can be achieved through transmitting
each stream with different power. Those streams that are
transmitted with higher transmitted power experience lower
channel bit error rate (BER) than those that are trans-
mitted with smaller transmission power. One method to
achieve this is through use of multi-carrier transmission
where different layers are transmitted using different car-
rier frequencies [2] [3]. An alternative approach is to embed
enhancement layer information into layers containing ba-
sic or more important information [4].
investigate both of these approaches.

In general, there are two sources of distortion. The
first component is due to lossy compression done at the
source coding stage. The other source of distortion is be-
cause of the possibility of the channel coding failure where
some of the erroneously received bits cannot be corrected
contributing to the overall distortion. These two compo-
nents are contradictory. For example, one can reduce the
source coding rate and hence provide the possibility of more
protection against channel impairments; decreasing the sec-
ond component at the expense of increasing source coding
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distortion. Therefore, by joint design of source and channel
coding blocks it may be possible to minimize the overall
distortion. This is indeed the case if the channel encoder
used has finite complexity and delay. The separation princi-
ple, however, states that by allowing complex enough source
and channel encoders, it is possible to transmit information
at as closely as possible to the channel capacity and hence
eliminate the second distortion component. In this paper,
we first consider the case where the channel distortion due
to channel errors is assumed to be negligible and then pro-
vide a generalization to includes the effect of channel errors.

2. PROBLEM STATEMENT AND OPTIMUM
POWER ALLOCATION POLICY

Let us consider an information stream z(n) which is split
into M streams {zx(n)} having distortion rate functions
Di(R), k=1,---,M. Also, let Py denote the transmission
power used to transmit the kth layer information (zx(n)).
The problem addressed here is then to minimize the to-
tal distortion d = Zk di subject to the constraint on the
average transmission power P = 1/M Zk Py where dj is
distortion incurred while transmitting the kth layer '. To
this end it is necessary to find a relationship between dis-
tortion dx and Pr - the transmitted power used to send
this stream. In general, the channel capacity is an increas-
ing concave function of the transmission power which we
denote by C(P). We can then define distortion power func-
tion D(P) as D(C(P)) which provides a lower bound on the
transmission power given a required end-to-end distortion.

We first assume that the source compression is done us-
ing a high-rate quantizer. In this case it is well known that
the distortion rate function can be closely approximated as:

(M

where €; is a parameter depending on the source distribu-
tion, of is the variance of the kth layer signal and R is
the rate at which the source is encoded at. An implica-
tion of this assumption is that distortion incurred at the
kth layer cannot be greater that ¢xo7. Assuming that the
channel is additive white Gaussian noise (AWGN) chan-
nel and it is possible to at channel capacity given by C =
1/2log(1+ P/N) then

Di(R) = €k0i2_2R,

2
Di(P) = —7%

=TT P/N @)

!Note that it is implicitly assumed that the layers are
uncorrelated.



Note that it is assumed that orthogonal transmission of
layers, e.g. through multi-carrier transmission, is used and
hence the signal power of the other layers do not interfere.
Then, to find the optimal power allocation policy, we have
to solve the following convex optimization problem:

min d= f: €k012°
- — 1+ Px/N @)
= 3
M
subject to MZ P.=P
k=1

The solution to the above convex optimization problem is:

Pe=vwP+(vw—1)N, k=1,--- .M (4)

where vi is defined as

(5)
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The above power allocation policy and hence the rate at
which each layer is encoded is dependent on the noise level
of the channel. Using the above policy the distortion in-
curred at band k is:

dk

% €x02 <Z \/610,2) (L+P/N)™Y,  (6)

which is not same for different bands. Indeed, the bands
with higher amount of energy experience more distortion.
This is in contrast to the customary rate allocation policy
where the optimal policy results in equal distortion in all
the bands. In the following sections, we will show that
embedded transmission results in distortion at each bands
to be the same. One can then show that the total end-to-
end distortion resulting from the optimum power allocation
policy (4) is:

ﬁ (IZI: \/e;a?)
T+ PN

By further investigation of the power allocation policy
(4), one can distinguishes two different classes of layers,
namely those with v, > 1 and those with vx < 1. Note
that ~x is an indication of the energy of that layer. As the
power noise level of channel (N) increases more power is
allocated to those layers with higher energy at the expense
of those layers having smaller energy.

If the channel has a time-varying nature and the noise
level of the channel changes with time, then the allocation
policy should also change with time. One method is to
allocate power based on the channel worst case condition
(maximum N). In this case the transmission data rate for
the high energy layers (& > 1) is always below the capacity
provided for those layers and is therefore guaranteed. The
situation is however different for the low energy layers (v& <

1).

(7)
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2.1. Coding Gain

It is possible to define coding gain in a similar fashion as is
done in the case of rate allocation policy for transform or
subband coding methods [5]. If we assume that the same
power (P) is allocated to all the layers, then from (2) we
can show that the end-to-end distortion is

M
S et
I=1
—_— —————— 8
1+ P/N (&)
Comparing the above to (7), we can define the coding gain
G as the ratio of the distortions resulted from these two

policies
L M
LS
G= =1 9)
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W 2 Vel

i=1
which is the ratio of the arithmetic of {e;0?,l =1,---, M}
to the square of the arithmetic mean of {\/ei6?,1 =1,---, M}
and as a result G > 1. The equality holds if and only if €;07
is the same for all the bands.

An interesting observation is since the arithmetic mean
of positive number is lower bounded by their geometric

mean,
1/M
1
2
(314 <! —
! l) = (M
M
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M

\/5;@2) (10)

1/M
ezo'?) (11)

where the right-hand side of the above inequality is the
coding gain had the separation between source and chan-
nel coding been invoked. In other words, fundamentally,
it is more advantageous to consider the information of all
the layers as one stream and allocate all the power to max-
imize the transmission rate for this stream than unequal
power allocation for different layers. Practical implementa-
tion aspects of both methods should, however, be taken into
consideration. Moreover, for the class of time-varying chan-
nels - where the statistics of the channel noise changes with
time - the capacity of the channel and hence the rate that
being allocated among the bands is not necessarily known
a-priori.

=1
and hence

2.2. Best Unitary Transform

It is well known that the Karhunen-Loeve transform (KLT)
is the best unitary transform in the sense of maximizing the
coding gain expression given by the right hand side of (11)
[5]. This is done by showing that the geometric mean of the
variance(energy) of the output signals is lower bounded by
the geometric mean of the eigenvalues of the input signal
correlation matrix. Therefore, the best transform is the one
that make the correlation matrix to become diagonal - i.e.



the KLT transform. We now show that the same is true for
the coding gain expression (9).

We assume that €¢; = - - - = epr, which is indeed the case
if the input signal has Gaussian distribution. In the ap-
pendix we show that for an M x M positive definite matrix

R
D o VAR) < 3T V(URTY,,
=1 i=1

where \;(R) is the sth eigenvalue of R, U is a unitary trans-
form and (URU*); denotes the lth diagonal element of
URU". Note that the right hand side of the above inequal-
ity corresponds to the denominator of (9). Therefore by
minimizing this expression the maximum coding gain can
be achieved. This is indeed the case if the unitary transfor-
mation used diagonalizes the correlation matrix R resulting
in the equality to hold in (12). As a result, the best strategy
is to de-correlate the signal among the bands through use
of the KLT transform.

(12)

3. DISTORTION-POWER OPTIMIZATION

The analysis of the previous section is based on the assump-
tion that high-rate quantization is used and the distortion
at band k is always less than or equal to exoz. This as-
sumption implies certain constraints on the value of vi’s.
Using the fact that in (4) P > 0 in (4), we can find the
following bounds:

N
_— k=1,---,M,
Tk N+ P
IN+MP
T 2rES =1, M 1
! >~ N+P 17 3 (3)

where I'; is the sum of I arbitrary vx’s. As the noise level
of the channel, N, increases the above constraints implies
that for the analysis of the previous section to be valid, it
is necessary for all the bands to contain almost the same
amount of energy.

We define the distortion power function which relates
the distortion incurred at each band to the transmission
power used. Note that no assumption on the error-free
transmission or high-rate source coding is being made. This
function characterizes the lower bound on the transmission
power necessary to achieve a certain level of distortion or
conversely the lower bound on end-to-end distortion given
a specific level of transmission power. This function is a
non-increasing function since as one increases the allocated
power, the overall distortion cannot increase. It is also con-
vex since otherwise it would be possible to use time-sharing
and achieve better performance than the one specified by
the function which is clearly a contradiction. We can now
rewrite the optimization problem (3) as

M
min d= Z Dy(Py)
k=1 (14)

M
subject to Il/[— Z P.=P
k=1
where Dy (P) is the distortion power of the kth band. Since
all Di(P) are convex, d is a convex function and invoking
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Figure 2: Operational distortion power function

Kuhn-Tucker theorem, the solution to the above problem
{P}} is given by:

od o Dx

éﬁlpk:P‘:ze if Pp >0

od (15)
ﬁlPk=P,:<9 if Pp =0

for some 6 < 0. The above policy which is also known as
constant slope policy has been also proposed for rate allo-
cation [7] in the rate constrained optimization.

We can also define operational distortion power func-
tion for each layer. For example consider a binary sym-
metric channel where the probability of error is dependent
on the transmission power being used. We also consider a
family of quantizers (not necessarily scalar) where the rep-
resentation levels are not necessarily the centroid of their
respective Voronoi region and as a result the source coding
distortion and the distortion due to channel errors cannot
be decoupled [6]. Now for each power transmission level, we
can find the corresponding distortion (X’s in Figure 2) and
define the operational distortion power as a convex hull of
these operating points as is shown in Figure 2. We then use
(15) to find the operational point of each layer such that
the constraint on total transmission power is met.

4. EMBEDDED TRANSMISSION

Through embedded transmission the information of one layer
is embedded in the other layers - e.g. embedded modulation

proposed in [4] for transmission of HDTV signal over broad-

cast channels. In this section, we consider two layers where

as before P; (¢ = 1, 2) is the power allocated to transmission

of layer ¢ where Py + P> = 2P. It is well-known that

1 P
38 (1 t 7\7)

%log (1+

1

72

Il

P )
Pi+ N



where r; (1 = 1,2) is the maximum transmission rate for the
ith layer {8]. Assuming that the distortion rate function of
both bands is given by (1), the following power allocation
can be shown to minimize the overall end-to-end distortion
d:

2
P = ?Z;\/N(N+P)—N (17)
2032
P, = 2P-P (18)
resulting in
2 2 2
d=2dy = 2dy = 2L 272 (19)

V1+2P/N

where a necessary condition for the above analysis (high-
rate quantization) to hold is:
2P

_—_— <14 —.
1+4+2P/N ~ e05 — + N

1 €07

P (20)
Note that in contrast to the power allocation policy (4) for
multi-carrier transmission, the above policy results in equal
distribution of distortion at each band. Also, generaliza-
tion to arbitrary distortion rate functions can be made in a
similar fashion as was done in the previous section.

4.1. Broadcast Channel

In the broadcast channel, the transmitter tries to send infor-
mation (possibly the same) simultaneously to two or more
receivers [8]. For example, this is the situation in the down-
link (base to mobile) channel of wireless access networks.
Among possible strategies are time sharing, frequency shar-
ing and embedded transmission. It is well-known that em-
bedded transmission always outperform either time or fre-
quency sharing methods [8].

Let us assume that the same information stream is in-
tended to two receivers, where each receiver experiences
different noise level Ny < Nz. The ith receiver (i = 1,2)
receives information at rate r; and experiencing distortion
level d;. If we assume N; < Na, then r1 > ra, di < d3. For
AWGN r; and ry are given by:

1 P,
" 2 %8 t P+ N,
1 P,
rn = r2+ Elog (1 + ]_VLl) . (21)

The goal is to allocate power to each stream (choose P, and
P,) subject to the constraint Py + P> = 2P such that the
overall distortion (d1+dz) is minimum. Assuming high-rate
distortion power function, the optimum power allocation
policy is given by:

2
o= 2N (N, = N)
€20
P, = QP—PL (22)

Note that P; is independent of the average power P. Ex-
tension to the general distortion rate functions can be made
in a similar fashion as that of Section 3.
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5. APPENDIX

In this appendix, we show that (12) holds for all positive
definite matrices R. Let us, as before, denote the lth row
and kth column of matrix X by X;x. Then clearly

2% < 3, DX
> VEX

IA

(23)

Il

where X" is the Hermitian transpose of X. Then we have

YVNR) = DAY (24)
= Y (UR'U")
< > V(URU* (25)
1

where the second equality holds because of the invariance
of the trace of a matrix under unitary transformation and
the last inequality results from (23) by substituting X =
UR'/?U*. This is possible since R is a positive definite
matrix and its square root R!/? is well-defined. O
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