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ABSTRACT

In signal analysis-synthesis, the analysis derives a set of pa-

rameters that the synthesis uses to reconstruct the original
signal. In musical applications, this reconstruction should
be perceptually accurate, and the parameterization should
allow for such desirable signal modifications as time-scaling,
pitch-shifting, and cross-synthesis; the analysis parameters
should correspond to asignal model that is flexible enough
to allow these transformations. Sinusoidal modeling meets
this flexibility requirement, but has difficulty representing
some salient features of musical signals such as attack tran-
stents and noiselike processes. In this paper, sinusoidal
modeling is reviewed and some variations are proposed to
account for its shortcomings; also, wavelet-based represen-
tations of musical signals are considered.

1. SIGNAL MODELING FOR MUSIC

A signal model provides a mathematical representation of
a signal in terms of salient parameters. For a given signal,
these parameters can be determined by a suitable analy-
sis, and can be used in a synthesis process to construct
an estimate of the original signal; note that the analysis-
synthesis method and the signal model are inherently cou-
pled. In music analysis-synthesis, it is often desirable to
effect transformations such as time-scaling, pitch-shifting,
and cross-synthesis; this is made possible by using a flexi-
ble signal model whose parameters can be modified before
synthesis to produce the desired transformation.

In some analysis-synthesis scenarios, there is a difference
between the synthesized signal and the original. This is
termed the analysis-synthesis residual; it exists when the
signal model does not account for all of the features of the
original signal, or if the accompanying analysis-synthesis is
inaccurate. Shortcomings of the analysis-synthesis and the
underlying signal mode] are thus manifested in the residual.

Perfect reconstruction is frequently desired in analysis-
synthesis applications; in that case, there is no energy in the
residual and the synthesized signal is identical to the origi-
nal. In audio applications, on the other hand, it is generally
sufficient to achieve percepiually lossless reconstruction, in
which the synthesized sound is perceptually equivalent to
the original. To achieve this, either the residual must con-
tain only components that would be perceptually masked in
the synthesis, or the residual must be separately modeled
and reinjected into the reconstruction. Note that perfect
reconstruction is perceptually lossless, and that a perceptu-
ally lossless system can invoke psychophysical phenomena
such as masking to effect data reduction, i.e. its intermedi-
ate parameterization may be more efficient than that of a

perfect reconstruction system, and may also be more readily
transformable since the parameters are based on perception.
Analysis-synthesis can be generally viewed as follows:
K
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The synthesis estimates the original signal using a set of
functions based on the signal model and a set of coefficients
provided by the analysis; in some cases the expansion func-
tions are signal-dependent, and are derived by the analysis
as well. The functions and coefficients comprise the inter-
mediate parameterization of the signal. If coding efficiency
is desired, this parameterization should be as sparse as pos-
sible. In musical applications, however, the ability to trans-
form the parameters to achieve a certain effect often takes
some priority over data reduction, so in this case the param-
eterization should relate to natural musical features such as
pitch, harmonic structure, modulation (e.g. vibrato), noise
(e.g. breathiness), and dynamics such as attacks. If these
features are apparent in the parameterization, they can be
appropriately handled by the modification process. For in-
stance, in time-scaling it is generally undesirable to alter the
tune structure of sharp attacks, so it is necessary to iden-
tify the attacks at the parametric level in order to preserve
them for accurate synthesis. In this framework, modifica-
tions can be carried out by altering the coefficients or the
synthesis functions or both.

2. SINUSOIDAL MODELING

In sinusoidal modeling, the signal is modeled as a sum of
evolving sinusoids called partials:
Q(t)

d(t) = Y Ag(t)cosOq(t) ()
q=1

Here, Q(t) is the number of partials at time t; A4(t) is the
time-varying amplitude of the ¢:th partial and the total
phase ©4(¢) describes its frequency evolution and phase off-
set. Since this sum-of-partials model is not well-suited for
representing broadband noise processes, an additive noise
component s(t) is often included in the signal model, re-
sulting in a deterministic plus stochastic decomposition [1]:
z(t) = d(¢) + s(t). For musical signals, the additive noise
accounts for such mherently stochastic musical features as
breath noise. Because these processes are an integral part
of music, the noise component must be modeled indepen-
dently of the partials and reinjected at the synthesis stage to
insure the realism-of the output music [1, 2]; this inclusion

of noise is -a prerequisite for perceptual losslessness.
Analysis methods for the sinusoidal model are gener-
ally frame-by-frame approaches; the analysis parameters



134 TFTS' 96

are then frame-rate representations of the time-varying am-
plitude and frequency tracks of each partial. In [1, 3, 4],
the analysis uses the short-time Fourier transform (STFT);
the parameters of the partials in a given frame are found
by estimating the amplitude, frequency, and phase of the
peaks in the magnitude spectrum of the oversampled dis-
crete Fourier transform (DFT) of that frame. This contrasts
with the time-domain analysis-by-synthesis proposed in [5],
where the partials are estimated by exhaustively searching
for sinusoids that correlate strongly with the signal frame;
when the maximally correlated sinusoid is found, its con-
tribution is subtracted from the frame and the process is
iterated as in a matching pursuit. In either approach, the
analysis examines frames of length N and uses a stride L
(often N/2) to advance through the signal; N and L are
chosen to give a reasonable tradeoff between the efficiency
of the parameterization and its accuracy in representing the
time-domain variations of the signal. The result of the anal-
ysis is a set of amplitude, frequency, and phase parameters
{Aq,i,wq,i, di,q} for each partial g in each frame 1.

Synthesis for the sinusoidal model generally involves ac-
cumulating the time-domain outputs of a bank of sinusocidal
oscillators as in the signal model of equation 2. Synthesis
can also be done in the frequency domain by accumulating
the spectral contributions of the partials for each frame and
then using an inverse DFT and overlap-add to construct the
output from the frame-by-frame spectra [6]. This approach
will not be discussed further, however, since time-domain
synthesis more directly illustrates the signal representation
issues this paper is concerned with.

In time-domain additive synthesis, the output of the ¢g-th
oscillator is Ag[n]cos O4[n]; it is dictated by amplitude and
total phase control functions that must be calculated in the
synthesis process. This involves two difficulties, line track-
ing and parameter interpolation, both of which arise be-
cause of the time-evolution of the partials and the resultant
analysis parameter differences from frame to frame. Since
the analysis does not track the partials, but instead merely
derives sets of parameters for the partials that it finds in
the signal frames, the synthesis must establish continuity
by relating the parameter sets in adjacent frames to form
partials that endure appropriately in time. This line track-
ing is generally done by associating the g-th partial in frame
1 to the partial in frame ¢4 1 with frequency closest to wg;;
this procedure is carried out until each of the partials in ad-
jacent frames are either coupled or accounted for as a birth
or a death, i.c. a partial that is newly entering or leaving
the signal. For signals such as music with dynamic spectral
content, line tracking is a difficult problem, and a variety
of algorithms have been proposed [1, 3].

After partial continuity is established by line tracking, it
is necessary to interpolate the frame-rate partial parameters
to determine the sample-rate oscillator control functions.
Typically, interpolation is done using low-order polynomial
models such as linear amplitude and cubic phase. The par-
tial amplitude interpolation in synthesis frame ¢ is a linear
progression from the amphtude in analysis frame 1 to that
in frame 1 4 1 and is given by

Agit1 — Ag,i

/L;,.‘[ﬂ] = Ag: + S n 3)

where n = 0,1,...,5 — 1 is the time sample index, and S
is the length of the synthesis frame. Unless the analysis
parameters are intermediately interpolated to a different
time resolution, S = L, the analysis stride. The phase
interpolation is given by

éq,t["] = Ogi + wgin + C"wnz + Bq,ins (4)

where © and w enforce phase and frequency matching con-
straints at the frame boundaries, and « and § are chosen
the make the total phase progression maximally smooth [3].

Sinusoidal modeling has found many applications in
speech and audio coding and analysis-synthesis. This is
primarily because the representation in terms of sinuscidal
parameters is efficient and readily allows for such desirable
transformations as time-scaling, pitch-shifting, and cross-
synthesis [3, 4, 6]; it also provides for novel modifications
based on a musical timbre space, such as arbitrary interpo-
lation between disparate sounds. However, sinusoidal mod-
eling only derives an accurate reconstruction for signals that
vary smoothly on a time scale comparable to the frame rate.
Substantial changes that occur from frame to frame are not
well-represented by the analysis parameters since the STFT
is not adequately time-localized; also, the low-order inter-
polation used by the synthesis will not necessarily match
the behavior of the original signal. Thus, the dynamics of
the original signal are not accurately reconstructed in the
synthesis. As a result, the residual tends to contain rapid
transients related to note attacks and extraneous partials
brought about by the interpolation mismatch. These sig-
nal features are not meant to appear in the residual, which
ideally should only contain the broadband stochastic com-
ponent of the signal model; models of the residual are gen-
erally simple and can not specifically account for these fea-
tures, so they will not be preserved by analysis-synthesis of
the residual and thus will not appear accurately in the final
deterministic plus stochastic reconstruction [2], which will
then be perceptually lossy. Note that narrowband noise is
represented by the partials since it can be expressed as a
sinusoid modulated by a lowpass random process, namely
a sinusoid varying at the frame-rate time scale.

The sinusoidal synthesis can be expressed as a sam of
non-overlapping frames, each of which is a sum of partials:

Qi
Bn] = Y #iln] = 3> Aqiln]cosOuiln]  (5)
t i gq=1

Each of the modulated sinusoids in this expression spans
a frame, implying a constant time resolution. A transient
event that occurs on a time scale shorter than an analysis
frame is inherently spread out across the synthesis frame be-
cause of the fixed time resolution of these sinusoidal expan-
sion functions. Furthermore, the parameter interpolation
across frames results in additional smoothing of transients.
The combination of these effects creates a pre-echobefore an
attack; Figure la depicts a rapid onset of a single sinusoid
and Figure 1b shows how the attack is spread across sev-
eral frames in the synthesis. In Figure 1c, a more accurate
reconstruction of the attack is obtained by shortening the
frames near the onset; the accuracy could be improved by
decreasing the frame widths further. In this adaptive frame-
rate approach, the same parameter interpolation models
are used from frame to frame; the reconstruction is im-
proved because the time-varying frame rate results in syn-
thesis functions with varying time support that are better
suited for representing dynamic signals. The improvement
in accuracy, however, comes at the cost of additional anal-
ysis computation to locate transient behavior, additional
parameters for encoding the frame rate, an increased data
rate for decreased frame sizes, and possible limitations on
real-time synthesis for short frames. For applications where
these drawbacks are not prohibitive, this framework allows
a combination of the modification flexibility of sinusoidal
modeling with the representational accuracy of methods
based on appropriate time-frequency resolution tradeoffs.
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Figure 1. (a) The onset of a partial, (b) its delocalized re-

construction for N = 256, and (c) a more accurate synthesis

obtained by shortening the frames near the onset time.

3. WAVELETS

The above consideration of time-frequency resolution nat-
urally leads to a discussion of wavelets and their underly-
ing signal model. Though some musical applications of the
continuous wavelet transform have been developed [7], the
focus here will be limited to the discrete wavelet transform
and its implementation using a tree-structured filterbank.

The discrete wavelet transform is based on critically sam-
pled two-channel perfect reconstruction filterbanks with
halfband highpass and lowpass branches. If such a filter-
bank is iteratively applied to its own lowpass branch, the
discrete wavelet transform results; it is a decomposition of
the signal into octave bands (the highpass channels of the
iterated two-channel filterbanks) plus the lowpass channel
where the iteration is stopped. The lowpass channel signal
is a coarse estimate of the original signal. The reconstruc-
tion can successively approximate the original signal as a
sum of this lowpass version and the successively finer details
of the highpass channels; if all the details are added, the re-
construction is perfect. In this light, the wavelet transform
supports a model in which the signal is a a sum of a lowpass
approximation and several levels of detail.

The wavelet analysis filterbank derives the coefficients for
the linear expansion of the signal with respect to the ba-
sis functions corresponding to the impulse responses of the
synthesis filterbank. At each stage of the filterbank, the
basis functions have a different support in time: the high-
pass channel of the first stage has the shortest impulse re-
sponse, so this channel signal contains short-time features
of the original signal; deeper stages of of the filterbank
have longer impulse responses (basts functions). The chan-
nel signals thus represent signal behaviors on different time
scales; this suggests that the wavelet transform is suitable
for separating rapidly varying components like noise and
transients from long-term components like enduring low-
frequency partials. Note that if multiple partials fall in a
single band, they are not separated by the wavelet analysis.

Unlike sinusoidal modeling, the wavelet transform allows
for perfect reconstruction; also, depending on the specific
filters used, it can be more efficient to implement than si-
nusoidal analysis-synthesis. These advantages, however, are
accompanied by a loss of modification capabilities: though
the aforementioned separation of transients can be useful
for accurate time-scaling based on modifying the transform
coefficients, frequency-based modifications are difficult to
formalize. To get both the desirable time-frequency trade-
off of the wavelet transform and the musically meaningful
modifications of the sinusoidal model, the two approaches
can be merged by applying a sinusoidal amalysis in each
of the wavelet transform channels [8]. This amounts to
using a different frame rate for sinusoids in different fre-
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quency bands, and supplements the wavelet transform with
the ability to separate and estimate multiple sinusoids in a
single band. Synthesis for this multi-rate sinusoidal model
can be done using oscillators in the channels followed by the
synthesis filterbank, or by using a bank of oscillators with
multi-rate interpolation models. This approach is basically
an extension of the classic phase vocoder [9] that allows
more than one partial in each frequency band and achieves
a time-frequency tradeoff that represents partial behavior
more accurately than fixed resolution methods.

4. PITCH-SYNCHRONOUS WAVELETS

For pseudo-periodic signals such as music, an appealing
alternative to the lowpass-plus-details wavelet model is
the approach presented by Evangelista in [10], in which a
pseudo-periodic signal is modeled as a sum of a periodic
signal plus deviations from periodicity. The coarse signal
estimate, namely the periodic signal, is derived by bandpass
filtering the signal around a set of harmonic frequencies de-
termined by estimating the signal’s pitch period; the devi-
ation details correspond to frequency bands that get wider
as they get farther from the harmonic frequencies.

The decomposition of the signal into harmonics and mod-
ulation details around the harmonics is done by a pitch-
synchronous wavelet transform (PSWT), which relies on an
accurate estimate of the possibly time-varying signal pitch.
If the estimated pitch is P, the signal is demultiplexed into
P channels; the p-th channel signal consists of the p-th sam-
ple of each pitch period. Then, each of these P pitch-rate
signals undergoes a separate wavelet transform. The low-~
pass estimate of the p-th channel by the p-th wavelet trans-
form is then used to construct the p-th sample of the peri-
odic estimate; the highpass details of the P wavelet trans-
forms correspond to the various levels of deviation from
periodicity. An example of this model is given in Figure 2.

The PSWT is useful for obtaining musically important
modulation information about the signal, and provides
a more appropriate successive approximation method for
pseudo-periodic signals than the lowpass-plus-details model
of the wavelet transform. Time-scale and pitch modifica-
tions can be achieved by interpolating or decimating the
channel signals in time or across channels, respectively, and
interesting cross-synthesis results can be obtained by ap-
plying the modulation of one musical signal to the periodic
estimate of another [10]; these modifications are facilitated
by the pseudo-sinusoidal nature of the representation.

In this model, transients and noise are not part of the
fundamental signal estimate, and are primarily represented
by the wide bands away from the harmonics. In some cases,
robust pitch detection may improve this representation; if
no pitch is detected, the PSWT can revert to the standard
wavelet transform, which is more suitable for non-periodic
signal components [10].

5. WAVELET PACKETS

Wavelet packets, like wavelets, are based on iterating two-
channel perfect reconstruction filterbanks. In this case,
however, the filterbank can be iterated on either branch.
A tree-structured filterbank is grown by applying a met-
ric at each node to determine if iterating the filterbank at
that node improves the signal representation; this process
is analogous to pruning the full tree-structured filterbank.
The resultant transform creates a division of the frequency
domain that represents the signal optimally with respect
to the applied metric; this frequency division can be time-
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Figure 2. (a) A pseudo-periodic signal, (b) its periodic
estimate by the PSWT, and (c,d,e) three levels of details.

varied to create a wavelet packet that adapts to optimally
represent a signal whose characteristics change in time [11].

Pruning the filterbank tree corresponds to choosing a ba-
sis for expanding the input signal. One proposed metric for
pruning is the entropy of the expansion coefficients for the
basis that corresponds to the particular pruning. Entropy
measures the energy spread of the coefficients; the lower
the entropy, the fewer large-valued coeflicients. Thus, mini-
mizing the entropy results in a “best basis” where the basis
functions with large expansion coefficients are similar to the
principal components of the input signal. Small-valued coef-
ficients can be considered noise, and a thresholding scheme
can be applied so that these noise contributions are ex-
cluded from the synthesis. This approach was proposed as
a technique for removing unwanted noise from music record-
ings [12], but can also serve to derive the deterministic-plus-
stochastic signal decomposition discussed earlier; because
this method does not involve interpolation, it results in a
possibly cleaner stochastic component than the sinusoidal
analysis-synthesis residual, and allows for separate process-
ing of noiselike components as in the sinusoidal model.

As in the wavelet transform, modifications based strictly
on wavelet packet coeflicients are not easily tractable. This
difficulty can be circumvented by using the metric proposed
in [13], which measures the number of partials in the fre-
quency band corresponding to a node. The two-channel
filterbank is iterated at a given node if the number of par-
tials found in the prospective children nodes is greater than
or equal to the number of partials at the given parent node.
This process continues until each frequency band contains
at most one partial; the partial parameters are then esti-
mated based on the Tufts-Kumaresan method, which im-
proves In accuracy when applied in subbands as in this ap-
proach [13]. This analysis, which can be viewed as a phase
vocoder based on a wavelet packet filterbank, provides an
optimal sinusoidal decomposition of the signal. If time seg-
mentation is introduced to account for attacks and -signal
changes, and if line-tracking is introduced between adjacent
segments, the synthesis can be phrased in terms of oscil-
lators instead of a filterbank as in regular wavelet packet
approaches. This enables the wide class of modifications
achievable in the general sinusoidal model.

6. CONCLUSION

A variety of musical signal models have been discussed. The
sinusoidal model provides perceptually meaningful param-

eters relating to loudness and pitch, and is suitable for per-
forming the wide range of desired modifications, but has dif-
ficulty representing some signal features because of its fixed
resolution. In perfect reconstruction approaches such as
wavelets and wavelet packets, however, modifications based
on transforming the coeflicients or filterbanks are difficult
to generalize, and in cases where real-time synthesis is de-
sired, any complicated modification models are inapplica-
ble. Thus, the trend in the signal models presented is to
form hybrid representations that combine the flexibility of
sinusoidal parameters with the representational accuracy of
methods with appropriate time-frequency tradeoffs.
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