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ABSTRACT

Increased robustness of overcomplete expansions com-
pared to nonredundant ones is manifested for two pri-
mary sources of degradation, white additive noise and
quantization. Reconstruction from expansion coeffi-
cients adulterated by an additive noise reduces the noise
effect by a factor proportional to expansion redundancy.
We conjecture that the effect of quantization error can
be reduced inversely to the square of expansion redun-
dancy and prove that result i two particular cases,
Weyl-Heisenberg expansions and oversampled A /D con-
version.

1. INTRODUCTION

Motivation for the development of the theory of time-
frequency and time-scale expansions towards wavelet
and Weyl-Heisenberg frames [1] stems mainly from the
design freedom which is usually attained with over-
complete expansions. Also, it has been observed that
for a given accuracy of representation overcomplete ex-
pansions allow for a progressively coarser quantization
provided that redundancy is increased. The fact that
overcomplete expansions are less sensitive to degrada-
tions than nonredundant ones comes as no surprise con-
sidering that redundancy in engineering systems usu-
ally provides robustness. Although the principle of
redundancy-robustness trade-off seems intuitive, it is
not always simple to unravel underlying mechanisms
and give a quantitative characterization.

The first analysis of the effect of increased robust-
ness of overcomplete expansions to white additive noise
was given by Daubechies [1]. This analysis will be re-
viewed in the next section. It demonstrated that sig-
nals can be reconstructed from noisy expansion coeffi-
cients with an error whose variance is inversely propor-
tional to expansion redundancy. Daubechies further
conjectured that if quantization is the source of degra-
dation of expansion coefficients, then signals could be
reconstructed with an error which decays with increased
expansion redundancy faster than would be expected
based on the white noise model for quantization error.

The purpose of this paper i1s to demonstrate that

overcomplete expansions indeed exhibit a higher degree
of robustness to quantization error than to a white ad-
ditive noise. We conjecture that the information con-
tained in quantized expansion coefficients allows for
reconstruction with an error whose squared norm is
inversely proportional to the square of the expansion
redundancy. ‘This result is proven for a fundamen-
tal instance of quantization of overcomplete expansion,
namely oversampled A/D conversion, and then gener-
alized to Weyl-Heisenberg expansions.
Notation

Convolution of two signals f(¢) and g(¢) will be written
as f(t) * g(t). The Fourier transform of a signal f(t),
F{f ()}, will be written as ]E(w)

2. GENERAL CONCEPTS

Consider a frame {¢;};es in a Hilbert space H. Let
{#;};jes be its minimal dual frame, and let F, F:
H — £2(J), be the associated frame operator defined
by Ff = {c; : ¢ = (f,#j)}ies- Coefficients of the
expansion of a signal f in # with respect to {¢;}jes

F= cies, (1)

jeJ

are the image of f under F. H {p;};e7 is not an exact
frame (Riesz bases) in H, vectors ¢; are linearly de-
pendent, and consequently the range of F' is a proper
subspace of £2(.J).

Assume that the expansion coefficients of f are de-
graded by an additive white noise {n;};es. The noise
can be represented as n; = nj + n?, where {n}} is the
component which is in the range of F', while {n}’} is in
its orthogonal complement. The linear reconstruction

formula
free = Z(Cj + "j)ﬂoja (2)
jed
implicitly reduces to zero the noise component orthogo-
nal to Ran(F), giving frec = 3 ;es(cs —f—n;)(pj_, as llus-
trated in Figure 1. As the frame redundancy increases,
the range of I becomes more and more constrained
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Figure 1: Noise reduction in frames using linear reconstruc-
tion.

so the noise reduction becomes more effective. Based
on this argument it was shown in [1, 5] that in the
case of tight frames in finite dimensional spaces and
a white, zero-mean noise, the expected squared error
norm E(||f — frec||*) behaves as

E(|lf = frecll?) = O(o?/7), 3)

where o2 is the noise variance.

Noise reduction in Weyl-Heisenberg and wavelet frames

in L?(R.) was also studied by Daubechies [1] in the case
of signals which are well-localized in a bounded region
of the time-frequency plane, and can be well approxi-
mated using a finite number of expansion terms. If a
signal f is reconstructed from noisy coefficients as

frec: Z ((f)¢j>+nj)¢j;

JjeBCJ

the reconstruction error can be bounded as
E(|If = frecll®) = ellFI? + O(c? /7). (4)

The €||f]|? component in (4) is the result of the approx-
imation of f using the finite set of the expansion terms,
{pi}jeBcs. A rigorous proof of this result was given by
Munch [2] for the case of tight Weyl-Heisenberg frames
and integral frame redundancy factors.

Based on these results it may be conjectured that
the O(1/r) noise reduction property has a wider scope
than discussed here. However, no more general results
have been proven yet.

Quantization error is commonly modeled as a white
_additive noise, and this approach gives satisfactory re-

'sults when applied to orthogonal expansions. However,
in the case of overcomplete expansions quantization er-
ror exhibits certain structure which is obscured by the
statistical analysis. Here we give a different explana-
tion for the robustness to quantization which reveals
more about the underlying principles.

Quantization of expansions in a Hilbert space #,
with respect to a given frame {y;};¢s, is a many-to-
one mapping from H to H. It defines a partition of H
into disjoint quantization cells {C;};¢cz. In the case of

uniform scalar quantization each of the cells 1s defined
by a set of convex constraints of the type

Ci={f: (nij—1/2)g < (f, ;) < (nij+1/2)q, j € {5})
where ¢ is the quantization step, and n;;’s are integer
numbers. For each of the cells, the quantization maps
all the signals in the cell to a single signal in its interior,
usually its centroid. Roughly speaking, the expected
value of quantization error is proportional to the av-
erage quantization cell size. The error can be reduced
by decreasing the quantization step. Alternatively, the
partition can be further refined by adding new vectors
to the family {¢;}. Increased redundancy of the expan-
sion induces subdivisions of the quantization cells (see
Figure 2) which are result of additional constraints of
the form given in (5). This gives another explanation
of the error reduction property, this time for the quan-
tization error. If the signal f is reconstructed from
quantized coefficients {¢;};es using the linear recon-
struction formula fre. = ZjeJ ¢;j, then according to
the white noise model the expected value of the recon-
struction error behaves as E(||f — frecl|?) = O(g%/r).
This result agrees with experimental data {5] for moder-
ate frame redundancies. ‘However, with high expansion
redundancies thé deterministic nature of the quanti-
zation error is more pronounced and the white noise
model is inappropriate. Besides, if expansions in in-
finite dimensional spaces, (e.g. £%(Z) or L*(R)), are
considered the statistical approach is not convenient
for estimating the error norm since expansion coeffi-
clents are generally not square summable after a white
noise is added.

In addition to the inadequacy of the statistical ap-
proach, it turns out that linear reconstruction is sub-
optimal since it does not necessarily give a signal which
lies in the same quantization cell as the original. It can
be expected that a reconstruction algorithm which al-
ways yields a signal in the quantization cell of the orig-
inal better exploits information contained in the quan-
tized coefficients and thus reduces the quantization er-
ror more than the linear algorithm. Such a reconstruc-
tion strategy is called consistent reconstruction.

This observations were made first by Thao and one
of us in the context of oversampled A /D conversion {3].
It was also shown in [3] that in the case of the con-
version of periodic bandlimited signals (trigonometric
polynomials), consistent reconstruction gives an error
|1f = freell> = O(1/r%), where r is the oversampling
ratio, provided that f has a sufficient number of quan-
tization threshold crossings. The question which nat-
urally arises is whether this result has a wider scope.
So far it has been numerically verified for frames in R™
[5]. In the remainder of this paper we prove under cer-
tain assumptions the error behaves as O(1/r?) in the
case of Weyl-Heisenberg expansions. This result comes
as an implication of the deterministic analysis of over-
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Figure 2: Partitions of R2 induced by quantization of ex-
pansions with respect to an orthonormal basis (top) and
with respect to a frame of redundancy r = 3 (bottom).

sampled A/D conversion of signals in L?(R), which is
hereafter studied in more detail.

3. OVERSAMPLED A/D CONVERSION

Oversampled analog-to-digital conversion of an ana-
log o-bandlimited signal f(t) consists of sampling with
some sampling interval 7 < w /o, followed by quanti-
zation with a quantization step ¢. Note that we say
that f(t) is o-bandlimited if f() € L*(R) and f(w) =
0 for w > o. The sampling gives expansion coeffi-
cients of f(t) with respect to a family of sine functions,
{sincy (t—nT)}, .7, which is a tight frame for the space
of o-bandlimited signals. Therefore, oversampled A/D
conversion amounts to quantization of a tight frame
expansion.

Let g(t) be a consistent estimate of f(t), that is

TFTS'96 327

] \
£8(x,)-8(v,) WA I Vet

f oz
%)/ ’74 \

- In+2
Y. x
Yn-1 n+2 \ 30
fo
time
m - m+ ma2 m+3 m+4
T
-

Figure 3: Quantization threshold crossings of an analog
signal f(t) and its consistent estimate g(t).

a signal which shares the same quantization cell with
f(t), and assume that the sampling interval is small
enough so that all quantization threshold crossings of
f(t) occur in distinct sampling intervals. Then when-
ever f(t) goes through a quantization threshold at some
point z,, g(t) passes through the same quantization
threshold at a point y, which is in the same sampling
interval with z,, i.e. |€n — yn| < 7 (see Figure 3). At
the point &, the difference between f(t) and g(t) is
bounded as |f(zn) — g(zn)| = |g(zn) — 9(tn)| < cn - 7,
which follows from the bandlimitedness of g(t). Hence,
at the quantization threshold crossings of f(t), {z,},
the difference between f(t) and its consistent estimates
tends to zero as the oversampling ratio r = n /o7 tends
to infinity. If {x,} is a sequence of stable sampling for
the space of o-bandlimited signals [6], then the recon-
struction error also tends to zero when r — o0, and the
following theorem describes error behavior. Note that
as in Landau’s work [6] which introduced the notion of
sequence of stable sampling we assume that {z,} is a
uniformly discrete set. Such a sequence of points will
be also called here a frame sequence for the space of
o-bandlimited signals.

Theorem 1 [/] If the sequence of quantization thresh-
old crossings of f(t) forms a sequence of stable sam-
pling for the space of o-bandlimited signals, then for a
sufficiently large oversampling ratio and any consistent
estimate of f(t), g(t) € C1,

I£(t) = g < KIFOIP /72, (6)
where k is a consltant which does not depend on 7.

This theorem can be easily extended to complex
bandlimited signals, which is necessary for the gener-
alization to Weyl-Heisenberg expansions.
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4. QUANTIZATION OF
WEYL-HEISENBERG EXPANSIONS

Let {‘/’m,n(i) : Som,n(t) =p(t - nto)exp(jmot)}m,nez
be a Weyl-Heisenberg frame in L?(R) derived from
a window ¢(f). Frame coeflicients {cmn : ctmn =
{@mn, f)} of asignal f can be expressed in the Fourier
domain as

Cmn = /__ f(w - mw0)¢* (w)ejwntgdw. (7)

For fixed m, the coefficients ¢, ,, are samples of the
signal [, (t) = [f(t)ezp(jmwot)] * (1), which will be
called the m-th subband component of f(t). This inter-
pretation of Weyl-Heisenberg frame coefficients of the
signal f(¢) implies that their quantization amounts to
quantization of samples of the subband components of
f(t). Note that these coefficients are in general com-
plex and it is assumed here that the real and imaginary
parts are quantized separately. If the frame window
©(t) is a o-bandlimited function, each of the subband
components is also a o-bandlimited signal. In this con-
text, a signal g(t) is said to be a consistent estimate
of f(t) if they have the same quantized values of the
frame coefficients and each subband component of g(t)
is continuously differentiable, g,,(t) € C!. Note that
the subband signals, being bandlimited, are continu-
ously differentiable almost everywhere.

According to Theorem 1 we can expect that if the
frame redundancy is increased by decreasing the time
step tg for a fixed wgp, the quantization error of consis-
tent reconstruction should decay as O(¢2). This result
is established by the following corollary of Theorem 1.

Corollary 1 [4] Let {omn(t)} be a Weyl-Heisenberg
frame in L*(R), with time step to and frequency step
wo, derived from a o-bandlimited window function ¢(t).
Consider quantization of the frame coefficients of a sig-
nal f(t) € L>(R) and suppose that for a certain wq the
following hold:

1)  the quantization threshold crossings of both the
real and imaginary parts of all the subband com-
ponents f(t) = (F(t)e?™) xp(~t) form frame
sequences for the space of o-bandlimited signals,
with frame bounds 0 < of, < f, < oo and
0<a, <8, <oo;

1)
T 3
sup max(ﬁ;”,?—?—) =M < oo.
meZ S

Then there erists a constant 8, such that if t; < 6,
the reconstruction error satisfies for any consistent es-

timate g(t) of f(t),
17() = a@II* < klIF@OI7E, (®)

where k 1s a constant which does not depend on t,.

Since we consider the case when wg is constant, this
result can be expressed in terms of the oversampling
ratio, 7 = 2 /woty, as ||¢]|2 = O(1/r?).

Along the same lines it can be shown that analogous
results hold in cases when the window function is time-
limited or if the signal has a compact support in either
time or frequency.

5. CONCLUSION

In this paper we studied the effect of increased robust-
ness of overcomplete expansions to quantization. The
effect of quantization is commonly analyzed using the
white noise model, which indicates that the quanti-
zation error decays inversely to the expansion redun-
dancy. Overcomplete expansions, however, exhibit a
higher degree of robustness to quantization than to the
white noise degradation. We demonstrated that in the
case of Weyl-Heisenberg expansions and oversampled
A/D conversion the quantization error is inversely pro-
portional to the square of the redundancy factor.
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