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Abstract

The method for universal transform coding based on backward adaptation
introduced in [1] is reviewed and further analyzed. This algorithm uses a lin-
ear transform which is periodically updated based on a local Karhunen-Loeve
Transform (KLT) estimate. The KLT estimate is derived purely from quantized
data, so the decoder can track the encoder state without any side information.
The effect of estimating only from quantized data is quantitatively analyzed.
Two convergence results which hold in the absence of estimation noise are pre-
sented. The first applies for any vector dimension but does not preclude the
necessity of a sequence of quantization step sizes that goes to zero. The sec-
ond applies only in the two-dimensional case, but shows local convergence for
a fixed, sufficiently small quantization step size. Refinements which reduce the
storage and computational requirements of the algorithm are suggested.

1 Introduction

Universal source coding is the coding of a source with an unknown distribution. In
universal lossless source coding, there are several practical methods which are capable
of approaching the entropy rate bound. Universal codes for lossy source coding which
approach the rate-distortion bound have been proven to exist but are not practical.
This is because approaching the rate-distortion bound (with or without knowledge of
the source distribution) requires increasing the quantizer vector dimension without
bound. Since the computation associated with using a vector quantizer increases
exponentially with the vector dimension, practical coding methods must place relative
low limits on the vector dimension.

*J. Zhuang is currently with Pacific Bell, San Ramon, CA. M. Vetterli is also with Ecole Poly-
technique Fédérale de Lausanne, Switzerland.

1068-0314/97$10.00 © 1997 IEEE 231



232

Transform coding (with scalar quantization) provides a compromise between com-
putational complexity and performance. Limiting the quantization to scalars makes
feasible the use of longer vectors than would be possible had vector quantization been
used. Coding of longer vectors facilitates the exploitation of linear intersample de-
pendencies. The primary limitations of transform coding are that it can not exploit
nonlinear dependencies and it does not benefit from packing gain.

In transform coding of a stationary source with a known distribution, it is well
known that, subject to certain conditions, the optimal transform is the data-dependent
Karhunen-Logve Transform (KLT). The KLT is the unique transform that both decor-
relates the data (the transformed data has uncorrelated components) and gives op-
timal energy compaction (the diagonal entries of the correlation matrix of the trans-
formed data are in decreasing order).

The study of adaptive transform coding has been a rich research area for several
years. Recently, very good transform coding results have been reported using classi-
fication based methods, #.e. schemes in which the signal space is divided into a finite
set of classes and a fixed transform is designed for each class [2, 3]. Classification
methods generally rely on training for defining classes and/or designing a transform
code for each class.

This paper extends results on a method for universal transform coding that we
introduced in [1]. This scheme does not rely on classification or on a priori train-
ing; instead, it periodically adjusts the transform to approximately match the KLT
estimated from local statistics. The novelty of this method is that the adaptation
depends only on quantized data and hence the encoder and decoder can maintain
the same state without any side information. The coder operates with a fixed vector
dimension and uses only scalar quantization; thus, it can not be expected to perform
at the rate-distortion bound. The goal is to achieve the performance of an optimal
transform coder despite an initial lack of knowledge about the source distribution.

The earlier paper [1] described the feasibility of this backward adaptive scheme
and presented experimental results on the coding of Gauss-Markov sources. The
present paper discusses the possibilities and limitations in backward adaptive cod-
ing (Section 3), establishes convergence properties of the algorithm (Section 4), and
suggests computational refinements (Section 5).

2 Structure of the Proposed Coder

An intuitive requirement for an encoder to achieve universality is for it to “learn” the
statistics of the unknown or time-varying source. Given a block of data, the standard
way to make a coding system adaptive is to use the data (and perhaps prior blocks)
to develop a model of the source and design an encoder optimal for the source prior
to coding the data. In order for the receiver to correctly decode the data, it must
be informed of the adaptation of the encoder; hence the parameters of the encoder
are sent along with the coded data. The main sources of performance degradation
compared to an optimal “omniscient” source coder are modeling error and the cost
of sending encoder parameters to the receiver. A block diagram for such a system
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Figure 1: Structural comparison between a typical forward adaptive transform coding
system (top) and the proposed backward adaptive system (bottom).

Is shown in the top half of Figure 1. The sequence of source vectors is represented
by {z,}52, C RY, where we usually but not always assume that z,, is formed by
blocking a scalar-valued source. The linear transform and scalar quantizer used for
vector z, are denoted by T}, and @, respectively; the subscript emphasizes that these
are potentially adapted.

This work asks, “How well can one do without sending any encoder parameters to
the receiver?” For the receiver to be able to correctly decode the data without being
explicitly informed of the encoder state, it is necessary that all encoder adaptation
depend only on information already available at the decoder at no additional cost,
i.e. the coded data stream. In the parlance of communication, we are avoiding side
information by using backward adaptation.! With this strategy, one avoids the price
of side information but the efficiency of estimating source statistics is reduced. Also,
there is some performance penalty from the requirement that adaptation be strictly
causal. A block diagram of the proposed coder is shown in the bottom half of Fig-
ure 1. Structurally, eliminating the need for side information is much like put the
quantization “inside the loop” in ADPCM.

3 Transform Adaptation

For an arbitrary source distribution and bit rate, the KLT is not necessarily optimal.
However, because of a lack of methods for finding an optimal transform that are

'In practical forward adaptive transform coding systems in which only the quantization is
adapted, 20 to 40 percent of the available bit rate is assigned to side information [4, §2.3]. A system
which adapts the transform itself would presumably require at least as much side information.
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practical for “on-line” use, we will in fact attempt to estimate and use the KLT. In
particular, we will assume that the transform we wish to calculate is the local KLT,
i.e. the KLT assuming the signal is wide-sense stationary with autocorrelation equal
to that measured locally.

Determining the local KLT requires estimates of the second order statistics of
%, namely R, = E[z,z7]. If the unquantized signal z, could be used in parameter
estimation, we could replace the ensemble average with a time average. The following
subsections address the estimation of R, when only the quantized version Z,, can be
observed.

3.1 Parametric case

Consider the coding of a scalar source and suppose that the source can be described
by a parametric model. Then, as described by Yu {5], the parameters of the source can
in general be consistently estimated from observations of a quantized version of the
source as long as the number of quantization bins exceeds the number of parameters.
A scalar quantized random vector could be treated very similarly, with bins that
are cartesian products of the bins in the scalar case.? After finding the parameters
describing the source, one can find the moments needed to calculate the KLT.

The approach described above is not entirely satisfactory because it requires the
estimation of a large number of bin probabilities.®> In the case of a Gaussian source
and uniform quantization, the situation is simpler because the parameters of the
unquantized signal can be estimated from just the moments of the quantized signal
as opposed to all of the relative bin probabilities. This is made more precise by the
following theorem [1]:

Theorem 1 Let X = [X1,... ,Xle, X ~ N(0,%), where ¥ is an unknown non-

degenerate covariance matriz. Let X be a scalar quantized version of X such that for
n € Z either

(l) X, € [HAZ‘, (n+ ]-)Az) = Xl - (TL+ %)A“ or

Then for any set of positive, finite quantization step sizes Aq, ..., Ay, all moments
of X can be recovered exactly from the first and second order moments of X.

The proof is based on finding the mapping between the moments of X and the
moments of X and then showing that this mapping is invertible. The general form of
the mapping is complicated, but if the quantization step sizes are small very simple
approximations can be used [1].

2t is interesting to note that even very coarse scalar quantization can yield enough information
to fit a reasonable parametric model. For example, quantizing with only three bins will yield 3* — 1
independent probability estimates, where k is the vector dimension. For any k € Zt, 3F-1>
%kz + %k, so this quantization is fine enough to fit a multivariate Gaussian signal model.

3The number of bins is exponential in the vector dimension.
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3.2 Estimation noise

Since quantization is an irreversible reduction in information, it must be at least as
hard to estimate the moments of a signal from a quantized version as it is from the
original unquantized signal. This subsection quantifies this chief disadvantage of a
backward adaptive system. Theorem 1 shows constructively how the moments of
the unquantized signal can be recovered from the moments of the quantized signal.
However, this alone does not tell the whole story: the moments of the quantized
signal must also be estimated.

Let X3, Xs,..., X be an i.i.d. sequence of Gaussian random variables with mean
zero and unknown variance o2. It is easy to check that the sample variance s? =
L3™% X2 is an unbiased estimator of the variance.* The variance of this estimate is
given by E[(s? — 02)?] = 22,

Now suppose that instead of observing X, Xs, ..., X, we observe quantized val-
ues X1, Xy, ..., Xk, quantized as in case (ii) of Theorem 1. To estimate o2, we can
first estimate 6% = E[X?] and then invert the mapping which relates o2 and 6%. The
quality of the estimate thusly obtained depends on the quality of the estimate of
&2 (the variance of the sample variance §2 = 1 3°F | X?) and the sensitivity of the
relationship between o2 and &2 to errors in 2. Using a first order approximation, we
obtain

Var(o? estimate) = g{gz} - Var(§?). (1)

An elementary calculation shows that Var(3?) = ﬂ)—(ﬂ;LXlz], where one can obtain

expressions for E[X{] and E[X?] by manipulating expressions from [6]. Normalizing
the variance of the estimate of o (approximated through (1)) by % (the variance
obtained without quantization) characterizes precisely how much is lost by estimating
from quantized data. For example, if the quantization is such that A/o = 3 (quite
coarse), one needs about twice as much data to estimate o2 as well as if the unquan-
tized data were available. A similar analysis can be done for covariance estimates.

3.3 Nonparametric case

If a parametric source model is not known, making corrections as in Theorem 1 is
simply impossible. An open theoretical question is to determine the effect of such
corrections if an incorrect source model is used. Nevertheless, since a source model
can generally not be guaranteed, for the remainder of the paper it can be assumed
that estimates of the moments of the quantized signal are used directly as estimates
of the moments of the original unquantized signal.

4The sum is divided by k because the mean is known; if the mean was unknown and the variance
was estimated by summing the squares of the deviations from the sample mean, dividing by k ~ 1
would give an unbiased estimator.
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4 Convergence Results

The results of §3.1 indicate that if a parametric source model is known, in the absence
of estimation noise® (or asymptotically as the estimation noise is driven to zero), the
optimal transform can be computed. But as mentioned in the previous section, the
actual proposed algorithm uses estimates of moments of the quantized signal directly
as estimates of the moments of the original signal. In a variety of simulations, some
of which were reported in [1], this algorithm has converged. In analytically studying
the convergence of the algorithm, it is convenient to first consider a “non-stochastic”
version of the algorithm where certain quantities which would be estimated online
are replaced by their expected values. This non-stochastic version is analyzed in this
section.

4.1 General convergence result

Let z € RY be arandom vector with R, = E(z2T]. Let Ty € RV*¥ be an orthonormal
matrix. Consider an iteration which updates the transform as follows:

o y, =Thz, 50 Ry, = Elynyl] = T,R,TYL.

® J, = go{yn), where g, is a uniform scalar quantizer with stepsize A,. Denote
the effect of the quantization on the autocorrelation by Ry, = Q(R,,)-

o 3, =TFg,, 50 Rg, = T,TRgnTn.
o Ty is the KLT of R, so B;, = T2, AyT 11, where A is a diagonal matrix.

The function ¢ depends on the distribution of z. Theorem 2 shows that under certain
conditions on @, there exists a sequence of step sizes such that this deterministic
iteration converges to a transform which decorrelates z, i.e. Ry, approaches a diagonal
matrix. In order to measure the degree to which T, decorrelates z, we define a
distance measure ||| - ||| between a matrix A and the set of diagonal matrices by

AN = 324 a3

Theorem 2 Suppose Q is such that Q(A) is diagonal if and only if A is diagonal.
Suppose also that Q(A) can be written as Q(A) = A + bly + C, where b € R,
C € RY*N, and |C|| is o(A).S Then for an initial transform Ty, there exists a
sequence of quantization step sizes {A,} C R such that the iteration converges to a
decorrelating transform, ie. |||R,,|{| — 0.

The proof, which is omitted due to its length (see [7]), is based on the existence
at iteration n of A, € RT such that ||[Ry,,,|I| < ]||Ry,|||. Thus the proof does not
preclude the possibility that we must have lim,_,,, A, = 0 for convergence. However,

5“Estimation noise” denotes the inaccuracy in the estimation of moments due to having only a
finite sample.

®Here || - || is used to denote the Frobenius norm [|A[|* = 3, ; ;.
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Figure 2: Simulations for various quantization step sizes demonstrating the conver-
gence predicted by Theorem 2. The source is a first-order Gauss-Markov process
with correlation p = 0.9, the vector length is N = 4, and the initial transform is the
identity transform.

we conjecture that the iteration will converge as above for a sufficiently small (but
strictly positive) fized quantization step size A. This stronger convergence result is
shown locally for the vector length N = 2 case in the following subsection.

The conditions of Theorem 2 are met, for example, when the source is Gaus-
sian. Figure 2 shows simulation results for a first-order Gauss-Markov source with
correlation coefficient p = 0.9, a vector length of N = 4, and Ty = I. In the sim-
ulation, |||R,,|]| converges monotonically to within the unit round of zero for fixed
quantization step sizes up to A = 2.7 The results are inconclusive for A = 5.

4.2 Analysis of the N = 2 case

When the vector length is N = 2, a simple analysis of the iteration is possible because
the transform matrices can be parameterized by a single variable. In particular,
beyond giving an alternate proof of Theorem 2 for the N = 2 case, we can show
that if the initial transform is sufficiently close to the optimal transform the iteration
converges for a fixed, sufficiently small quantization step size A.

2
Let R, = [ o1 192p } Without loss of generality, we can assume that the
og102p (25
sinf  cosé
assume o? # o3; if not, the situation is uninteresting because R, is diagonalized by
Tw/a independent of p. Let W (8) equal the off-diagonal element of TpR,TY . It is easy

transform iterates are all in SOy(R), parameterized as Ty = [ cosf —sinf ] We

"Convergence for A = 2 is very slow and is thus not apparent.
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to verify that 6* = arctan(%%) is a zero of W and hence Ty~ diagonalizes R,. (We
1

will not concern ourselves with the ordering of the diagonal elements of R,.} We can
furthermore show that W(6) = csin(2(f — *)), where ¢ = [1(0? — 02)? + 0202 p?] /2.
We will show that the iteration converges in a neighborhood of §* for small A.

Consider an iteration starting at 6 (near 6%). Let W () = W(6), where @ is the
iterate that follows from . Then W(f) = csin (arctan (){—2&_) - 29*) , where

. K 11—X22
Ry = { X1 Xip

}. Differentiating with respect to 6 one can show that
KXo Xo

4] K
df XII_XZZ

Defining § € RF, o, 3,7 € R through® [ 6;04 6-?—7 ] = Ry~ R, one can verify that

%W(G)‘ <2 - 2)

X1 _ 0109p — Lo —~)sin20 4 §cos 26
Xu — ng - U% —oi+(a—7) cos 20 + 23sin 20"

®3)

From (3) it is clear that by having «, 8, and y small enough but still potentially

nonzero (fine enough quantization but with a strictly positive step size), one can
4 __Kip
df X11— X2z

to LW (), we get ’%W(G)
neighborhood of 6*.

insure that ’

< 1, independent of #. Substituting in (2) and comparing
< |dd_t9W(0)|9:0*

4 ‘ , 80 the iteration converges in a
o=6

5 Computational Refinements

In the simulations reported in [1], conceptually simple data structures and computa-
tional mechanisms were used. In particular,

m—1

K-
mm:% S a(hatk+m), m=01,...,N—1, (1)
k=0

was used as an autocorrelation estimate computed from samples {xk}kK:_Ol, and eigen-
decompositions were computed using the MATLAB eig function. In this section a

few possible computational refinements are presented. The computational savings
and effects on performance are under investigation.

5.1 Autocorrelation estimation and data windowing

Suppose we are coding with vectors of length N, updating the transform after every
M samples, and using the past L samples for each transform update. Except for the

8This form does not uniquely define 6, o, and 7. It was chosen because, in the Gaussian case,
2
one can take § = ‘1\‘—2 and be left with « and v which go to zero even faster as A — 0.
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first update interval, where the two are equivalent, (4) can be replaced by a slightly
better estimate

L-1
Fopr(m) = = a(kM — L+ 0z(kM -~ L+£-m), m=0,1,...,N—1, (5
£=0

1
L
where the added subscript kM denotes that the estimate is computed at time kM,
i.e. with data up to and including z(kM — 1). It is understood that z(—(N — 1)),
z(—(N —2)), ..., z(—1) are to be taken to be zero.

Since the update of the transform depends only on estimated moments of the
source signal, the coder and decoder need not actually store the L past samples.
Neglecting block boundary effects, computing (5) simply requires N accumulators,
one for each desired autocorrelation lag, and the past N — 1 samples with which to
form products.

If L = M, handling block boundaries is very simple. After each transform update
the accumulators can all simply be reset to zero. Since the N —1 previous samples are
being buffered, calculations can proceed as before. The L < M case is even simpler.
After each transform update, one need not even increment the accumulators for the
next M — L samples. The accumulators are then reset and calculations proceed as
before.

The memory requirements can not be reduced as dramatically when L > M. For
simplicity, suppose L = PM with P € Z*.° In this case, the sum in (5) can be broken
into P sums, giving

P-1

. 1

Fepnr(m) = P Z Tob—prirym(m)y, m=0,1,... N1, (6)

K=0
where
M-1
Pkae(m) = 7 > a((k+P—1)M—L+0z((k+P—1)M ~L+£—m).

£=0

(The notation is somewhat cumbersome, but essentially 7,; and 7, , are autocorre-
lation estimates using the last L and M data samples, respectively, up to but not
including time ¢.) This shows that running autocorrelation estimates can be calcu-
lated using P sets of N accumulators and an N — 1 sample buffer. This is still a great
savings over storing L samples.

Equation (6) is an average of P autocorrelation estimates, each based on a window
of length M samples (plus a few earlier samples, actually). There is no a priori
requirement that each of the P estimates be weighted equally. One way to more
heavily weight the later autocorrelation estimates is to use a “forgetting factor” « as
in Recursive Least Squares [8]. The estimate would then be updated through

Frnew = (1 - a)fz,old + Olf‘;

as each new 7/, is calculated. This scheme eliminates the need for extra accumulators,
again lowering the requirement to N, one for each autocorrelation lag.

°If L/M & Z*, similar arguments could be made with P = ged(L, M).
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5.2 Eflicient update mechanisms

If the variation of the source is slow relative to the update interval—and the update
interval is long enough to have reasonable noise suppression—successive autocorrela-
tion estimates will not differ greatly. This feature can be exploited in the calculation
of the KLT. For example, one can first approximately diagonalize the autocorrelation
matrix using the previous KLT estimate. Then it should be possible to complete the
diagonalization with a small number of Jacobi rotation steps (see [9, §8.5]).

6 Conclusions and Ongoing Work

A method for universal transform coding which updates the transform based on alocal
KLT estimate was developed. The KLT estimate is derived purely from quantized
data, so the decoder can track the encoder state without any side information.

The convergence of this method in the absence of estimation noise was analyzed
and two convergence results were established. In simulations, the iteration converges
even when the quantization is relatively coarse.

Work on applying this coding scheme for still images is ongoing. On the theoretical
side, it seems that for stationary or slowly varying Gaussian sources it is possible to
precisely characterize the relationship between the update interval, the ability to track
the source, and the adaptation loss.
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