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ABSTRACT 
Signal modeling techniques ranging from basis expansions 
to parametric approaches have been applied to audio sig- 
nal processing. Motivated by the fundamental limitations 
of basis expansions for representing arbitrary signal fea- 
tures and providing means for signal modifications, we con- 
sider decompositions in terms of functions that are both 
signal-adaptive and parametric in nature. Granular syn- 
thesis and sinusoidal modeling can be viewed in this light; 
we interpret these approaches as signal-adaptive expansions 
in terms of time-frequency atoms that are highly corre- 
lated to the fundamental signal structures. This leads nat- 
urally to a discussion of the matching pursuit algorithm for 
deriving decompositions using overcomplete dictionaries of 
time-frequency atoms; specifically, we compare expansions 
using Gabor atoms and damped sinusoids. Such decompw 
sitions identify important signal features and provide par+ 
metric representations that are useful for signal coding and 
analysis-modification-synthesis. 

1. SIGNAL DECOMPOSITIONS 
Decompositions of signals in terms of elementary building 
blocks have been used in countless signal processing appli- 
cations. In such decompositions, a signal z[n] is represented 
as a linear combination of the form: 

K 

.[.I = C c u k g k [ n l  (1) 
k = l  

In a general analysis-synthesis framework, the expansion co- 
efficients cyk are derived by the analysis and the expansion 
functions gk[ra] are dictated by the synthesis, both in accor- 
dance with an underlying signal model. The set of coeffi- 
cients and functions provide a representation of the signal; if 
the representation is compact or sparse, the decomposition 
indicates basic signal features and is generally useful for sig- 
nal analysis and coding. It should be noted that compact 
representations tend to involve expansion functions that are 
highly correlated with the signal. 

When the function set g k [n] constitutes a basis, a given 
signal has a unique expansion. This is of special interest 
for orthogonal cases such as wavelet or Fourier bases since 
the expansion coefficients can be independently derived and 
since fast computation algorithms such as the FFT are read- 
ily available. Such basis expansions, however, have a seri- 
ous drawback in that a given basis is not well-suited for 
decomposing a wide variety of signals. As an example, con- 
sider the Fourier case: for a frequency-localized signal, a 
Fourier expansion is appropriately sparse and indicates the 
important signal features; for a time-localized signal, on 
the other hand, the Fourier representation does not read- 
ily provide information about the basic signal structure. 
This shortcoming results from the attempt to represent ar- 
bitrary signals in terms of a very limited set of functions. 

Better representations can be derived by using expansion 
functions that are signal-adaptive; this can be achieved by 
using adaptive wavelet packets or best basis methods, by 
parametric approaches such as the sinusoidal model, or by 
choosing the expansion functions from an overcomplete dic- 
tionary of time-frequency atoms. The latter two methods 
are of special interest here since they provide very flexible 
parametric representations. 

1.1. Granular Synthesis 
Granular synthesis is a technique in computer music which 
involves accumulating a large number of basic sonic com- 
ponents or p i n s  to create a substantial acoustic event [I]. 
This approach is based on a theory of sound and perception 
that was first proposed by Gabor [2]; he suggested that any 
sound could be described using a quantum representation 
where each acoustic qu,antum or grain corresponds to a lo- 
cal time-frequency component of the sound. Furthermore, 
such descriptions are psychoacoustically appropriate given 
the time-frequency resolution tradeoffs and limitations ob- 
served in the auditory system. 

In early efforts in granular music synthesis, artificial 
sounds were composed by combining thousands of parame- 
terized grains [l]. Individual grains were generated accord- 
ing to synthetic parameters describing both time-domain 
and frequency-domain characteristics, for example time lo- 
cation, duration, envelope shape, and modulation. This 
method was restricted to the synthesis of artificial sounds, 
however, because the representation paradigm did not have 
an accompanying analysis capable of deriving granular de- 
compositions of existing sounds. 

Simple analysis techniques for deriving grains from real 
sounds were proposed in [3, 41; the objective of such p n -  
dation approaches is to derive a representation of natural 
sounds that enables modifications such as time-scaling or 
pitch-shifting prior to resynthesis. The basic idea in these 
methods is to extract grains by applying time-domain win- 
dows to the signal. Each windowed portion of the signal is 
treated as a grain, and parameterized by its window func- 
tion and time location. These grains can be realigned in 
time or resampled in various ways to achieve desirable sig- 
nal modifications [3, 41. Similar ideas have been developed 
in the speech processing co"ity [6]. 

Grains derived by the time-windowing process can be in- 
terpreted as signal-dependent expansion functions that are 
highly correlated with the signal. If the grains are chosen 
judiciously, e.g. to correspond to pitch periods of a voiced 
sound, then the representation captures important signal 
structures and can as a result be useful for both coding and 
modification. Because of the complicated time structure of 
natural sounds, however, grains derived in this manner are 
generally difficult to represent efficiently and are thus not 
particularly applicable to signal coding. Nevertheless, this 
method is of interest because of its modification capabilities 
and its underlying signal adaptivity. 



The time-windowed signal components derived by granu- 
lation are disparate from the fundamental acoustic quanta 
suggested by Gabor; time-windowing of the signal, while 
effective for modifications, is not an appropriate analysis 
for Gabor’s time-frequency representation. This motivates 
both the following interpretation of the sinusoidal model 
as a granular analysis-synthesis and to a greater extent the 
subsequent consideration of signal decompositions based on 
parameterized time-frequency dictionaries. 

1.2. Sinusoidal Modeling 
In sinusoidal modeling, the signal is modeled as a sum 
of evolving sinusoids called partials. Analysis methods 
for this sum-of-partials model are generally frame-by-frame 
approaches based on the short-time Fourier transform 
(STFT); the parameters of the partials in a given frame are 
found by estimating the amplitude, frequency, and phase 
of the peaks in the Fourier spectrum of that frame [6,  71. 
These parameters are then frame-rate representations of the 
time-varying amplitude and frequency tracks of the partials. 
The frame size and analysis stride of the STFT are chosen 
to give a reasonable tradeoff between the efficiency of the 
parameterization and its accuracy in modeling the signal. 

Synthesis for the sinusoidal model can be achieved by 
summing the time-domain outputs of a bank of sinusoidal 
oscillators corresponding to the partials of the signal model. 
The output of a particular oscillator is dictated by ampli- 
tude and frequency control functions that are calculated in 
the synthesis process according to the parameters derived 
by the analysis. This involves two difficulties, line tracking 
and parameter interpolation, both of which arise because of 
frame-to-frame parameter differences for nonstationary sig- 
nals. First, the synthesis must relate the parameter sets in 
adjacent frames to form partials that endure in time. This 
line tracking is generally done by coupling partials in adja- 
cent frames if they are close in frequency; partials without 
appropriate pairings are accounted for as births or deaths, 
2.e. partials that are newly entering or leaving the signal. 
Second, after partial continuity is established, the frame- 
rate partial parameters must be interpolated to determine 
the sample-rate oscillator control functions. Typically, this 
interpolation is based on low-order polynomial. models such 
as linear amplitude and quadratic frequency (cubic phase); 
the interpolation functions are constrained to meet ampli- 
tude, frequency, and phase matching conditions at the syn- 
thesis frame boundaries, which correspond in time to the 
centers of the analysis frames [6, 71. 

The sinusoidal synthesis can be viewed as a sum of non- 
overlapping synthesis frames, each of which is a sum or par- 
tials. The reconstruction of the signal is given by 

Q, 

e[n] = xet[.] = ~ A , , , [ n ] ~ o s Q , , ~ [ n ]  (2) 

where Aq,+[n] and @4,2[n] are functions derived by interpo- 
lating the analysis parameters as described above; 2 is a 
frame index and q is a partial index. Note that each of 
the modulated sinusoids in this expression is time-localized 
to a synthesis frame and frequency-localized according to 
its quadratic frequency function. In this light, the sinu- 
soidal model can be interpreted as a decomposition in terms 
of linear-amplitude, cubic-phase sinusoidal atoms. These 
atoms are generated directly from the analysis data by the 
synthesis interpolation; the expansion functions in the si- 
nusoidal model are thus signal-dependent, and the time- 
frequency representation is signal-adaptive. 

Sinusoidal modeling derives an accurate reconstruction 
for signals that vary slowly with respect to the frame rate. 
Variations that occur on shorter time scales are not well- 
modeled. This difficulty is clearly explained by the atomic 
interpretation of the sinusoidal model; any rapid transient 

a z g=1 

is spread out across a synthesis frame because of the fixed 
time resolution of the sinusoidal model expansion functions. 
In short, these functions are inadequate for rapidly vary- 
ing signals. This situation can be remedied by applying 
a multiresolution framework to the sinusoidal model, ei- 
ther by subband filtering followed by sinusoidal modeling 
of the channel signals with long frames for low-frequency 
bands and short frames for high-frequency bands, or by 
using a time-varying segmentation with short frames near 
transients and long frames for stationary behavior [8]. Such 
methods admit cxpansion functions with an appropriate va- 
riety of time supports into the decomposition; this results 
in a more accurate signal representation. 

Sinusoidal modehng has found many applications in 
speech and audio coding and analysis-synthesis. This is 
primarily because the representation in term3 of sinusoidal 
parameters is efficient and readily allows for such desirable 
transformations as time-scaling, pitch-shifting, and cross- 
synthesis [6, 71. The efficiency results from the signal 
adaptivity of the expansion functions, and the modification 
capabilities arise because the representation is parametric 
in nature. In effect, if the sinusoidal parameters are mod- 
ified, a new set of expansion functions are derived based 
on those modifications. This robustness to modification re- 
sults directly from the parametric nature of the represen- 
tation. Basis-type expansions in terms of fixed vectors do 
not exhibit a similar flexibility; e.g. if the coefficients in a 
wavelet filterbank expansion are modified, aliasing is intro- 
duced. Furthermore, it is not clear how to achieve a desired 
perceptually-oriented modification such as pitch-shifting for 
an arbitrary expansion. 

The preceding discussions argued that granular synthesis 
and sinusoidal modeling can both be interpreted as time- 
frequency atomic methods, and that these approaches are 
useful due to the signal-adaptivity of the representation 
and their inherent parametric structures. Another way to 
achieve a parametric signal-adaptive representation is to 
choose the expansion functions from an overcomplete dictio- 
nary of parameterized time-frequency atoms. Expansions 
based on arbitrary dictionaries can be derived using the 
matching pursuit algorithm, which is described in the next 
section. Then, parametric dictionaries that readily allow 
for signal modifications will be discussed. 

2. MATCHING PURSUIT 
Matching pursuit is a recently proposed algorithm for deriv- 
ing signal decompositions in terms of expansion functions 
chosen from a dzctzonary [9]. To achieve a signal-adaptive 
representation, an overcomplete dictionary is used, me=- 
ing that the dictionary contains a basis for the signal space 
plus additional functions. This overcompleteness or redun- 
dancy implies that the dictionary elements, or atoms, ex- 
hibit a wide range of behaviors, and can thus provide better 
decompositions of a wide range of signals than a basis ex- 
pansion. This approach is adaptive in the sense that the 
algorithm chooses the appropriate atoms from the dictic- 
nary to decompose a particular signal. 

Matching pursuit refers specifically to a greedy iterative 
algorithm for determming an expansion given a signal and 
a dictionary of atoms. At each stage of the iteration, the 
atom that best approximates the signal is chosen, then the 
weighted contribution of this atom to the signal is sub- 
tracted and the iteration proceeds on the residual. Using 
the two-norm as the approximation metric, the task at the 
2-th stage of the algorithm is to find the atom g m(.) [n] that 
minimizes the two-norm of the residual signal 

rz+1[.1 = 7 z [.I - zYm(z) [.I (3) 

where cy, is a weight that describes the contribution of the 
atom to the signal, z.e. the expansion coefficient, and m(z) is 



the dictionary index of the atom; the iteration begins with 
rl[n] = ~ [ n ] ,  the original signal. The solution for a i and 
gm(i) [n] follows from the orthogonality principle; treating 
the sign& as column vectors, the two-norm of the residual 
ri+i is a minimum if it is orthogonal to the atom: 

(ri  -aigm(i)rgm(i)) = (Ti - aigm(i)) gm(i) = 0 
H 

(4) 

where the last step follows from restricting the atoms to be 
unit-norm. Then, the two-norm (r ,+I, ri+l) of the error is 

This energy is " i z e d  by choosing the atom g m(i) that 
has the largest magnitude correlation with the signal r i, 
and the expansion coefEcient for that atom is (g m ( i ) ,  r,). 

In deriving a signal decomposition, the matching pursuit 
iteration is continued until the residual energy is below some 
threshold, or until some other halting criterion is met. After 
I iterations, the algorithm gives the signal estimate 

r = l  

Note that the expansion functions here are highly correlated 
with the signal as in the methods of section 1. The mean- 
squared error of this approximate decomposition, namely 
the energy of the residual x[n] - 2[n], converges to zero as 
the number of iterations approaches infinity [9]. The con- 
vergence property of this successive approximation implies 
that I iterations will provide a reasonable I-term decom- 
position of the signal; global optimality, however, is not in- 
sured because of the nature of the algorithm. Determining 
the globally optimal I-term expansion based on an overcom- 
plete dictionary requires finding the minimum error over all 
I-dimensional dictionary subspaces, which is not computa- 
tionally feasible for large I [lo]. 

To enable representation of a wide range of signal fea- 
tures, large dictionaries are used in the matching pursuit 
algorithm. The computation of the correlations (g ,r  i) is 
thus intensive. As noted in [9], however, the computation 
can be drastically reduced using an update formula derived 
from equation 3; the correlations at stage i + 1 are directly 
related to the correlations at stage i by the equation 

where the only new computation required for the correlation 
update is the dictionary cross-correlation term (9, g m ( i ) ) ,  

which can be precomputed and stored. 

(g,ri+l) = (g,r*) - ai(g,gm(i)) (7) 

3. TIMELFREQUENCY DICTIONARIES 
Matching pursuit can be viewed as a method of finding 
sparse approximate solutions to inverse problems [ll]. This 
is equivalent to deriving sparse signal decompositions in 
terms of arbitrary dictionaries of expansion functions. Such 
decompositions are not particularly useful, however, un- 
less the functions correspond to relevant signal structures. 
Thus, overcomplete dictionaries consisting of atoms that ex- 
hibit a wide range of localized time and frequency behaviors 
are of signiscant interest; decomposition in terms of such 
atoms provides an adaptive timefrequency representation 
of a signal [9]. Such localized time-frequency atoms corre- 
spond to the perceptually motivated quanta introduced by 

a compatible analysis method for granular synthesis, espe- 
cially since the atoms in typical time-frequency dictionaries 
are parameterized in such a way that signal modifications 
can be achieved. 

Gabor. Matching pursuit using such atoms thus provides 

-1 - 
(b) atom 

2 0  
-1- 1 

-1- ' I 
0 20 40 Bo 80 100 120 140 160 180 200 

Time (samples) 

Figure 1. (a) a damptd sinusoidal signal, (b) the optimal 
first atom chosen from a symmetric Gabor dictionary, and 
(c) the residual; note the artifact near the onset time. 
3.1. Gabor Atoms 
The literature on matching pursuit has focused largely on 
applications using dictionaries of Gabor atoms; these are 
appropriate expansion functions for time-frequency signal 
decompositions 191. Such atoms are scaled, modulated, and 
translated versions of a single window function: 

In this notation, g(t) is a unit-norm window function from 
which the atoms are derived; each atom is indexed in the 
dictionary by a parameter set (3, w ,  7). This paramet- 
ric structure allows for a simple description of a specific 
dictionary and provideti modification capabilities; this is a 
two-fold advantage with respect to dictionaries of arbitrary 
vectors. A Gabor dictionary, which includes Fourier and 
wavelet-like bases, is highly overcomplete when the scale, 
modulation, and translation parameters are not tightly re- 
stricted; such overcompleteness, especially when coupled 
with a nonlinear analysis like matching pursuit, yields 
signal-adaptive representations [U]. 

In applications of G,abor functions, g ( t )  is typically an 
even-symmetric window. The associated dictionaries thus 
consist of atoms that exhibit symmetric time-domain be- 
havior. This is problematic for representing asymmetric 
signal features such as transients, which occur frequently in 
natural signals such as music. Figure l(a) shows a typical 
transient from linear system theory, the damped sinusoid; 
the f is t  stage of a matching pursuit based on symmetric Ga- 
bor functions chooses the atom shown in Figure l(b). This 
atom matches the frequency behavior of the signal, but its 
time-domain symmetry results in a pre-echo artifact in the 
residual as shown in Figure l(c). The residual has energy 
before the onset of the original signal, which the matching 
pursuit algorithm must then remove at subsequent stages. 
One approach to this problem is the high-resolution match- 
ing pursuit algorithm suggested in [13,14], where symmetric 
atoms are still used but the correlation metric is modified so 
that atoms that introduce such artifacts are not chosen for 
the decomposition. Another approach is to use a dictionary 
of asymmetric atoms such as damped sinusoids. 
3.2. Damped Sinusoids 
The common occurrence of damped oscillations in natural 
signals is sufficient justification for considering damped si- 
nusoids as building blo'cks in signal decompositions. This 
matching pursuit application is further motivated in that 
damped sinusoids are better suited than symmetric Gabor 
atoms for representing transients. Like the atoms in a gen- 
eral Gabor dictionary, damped sinusoidal atoms can be 
indexed by characteristic parameters; the damping factor 
a, modulation frequency w ,  and start time T specify these 
atoms: 

where S is a scaling factor needed to satisfy the unit-norm 
requirement. It should be noted that damped sinusoidal 

g{a,u,7} [n] = s a(n--7)eJwnu[n - T ]  (9) 
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Figure 2. (a) A gong attack, and decompositions uszng (b)  
10 symmetric Gabor atoms, and (c) 10 damped sinusozds. 

atoms can be interpreted as Gabor functions derived from 
a one-sided exponential window; the 
from typical Gabor atoms by their 
atomic structure is more readily indicated by a damping 
factor rather than a scale parameter, so the dictionary index 
set is different than in the general Gabor case. 

For a dictionary of damped sinusoids, the structure of the 
signal-atom correlations allows for reduction in the com- 
putation irrespective of equation 7 as well as an intuitive 
interpretation of the pursuit algorithm. The correlation 
computation over the time index is simplified based on the 
exponential structure of the atoms, which results in a re- 
cursion relation between correlations at neighboring times: 

where the omitted terms are corrections to account for trun- 
cation of the atoms [U]. This relation is simply a one- 
pole filter; it suggests interpreting the exhaustive correla- 
tion computation as an application of the signal to a dense 
grid of one-pole filters, which are the matchedfilters for the 
dictionary atoms. A further simplification can be achieved 
if the dictionary has a harmonic structure; for any dictio- 
nary of harmonically modulated atoms, the FFT can be 
used to compute correlations over the frequency index 1111. 

The dictionaries discussed consist of complex atoms. This 
is not problematic for applications with real signals since the 
pursuit algorithm can be modified 
of real signals based on a complex 

Figure 2 shows a comparison of decompositions using 
symmetric atoms and damped sinusoids. The dictionar- 
ies are designed for a fair comparison; the errors in the two 
pursuits exhibit similar convergence behavior as shown in 
Figure 3(a). The symmetric decomposition, however, in- 

tion pre-echo as a function of the er of iterations. 
As demonstrated in Figure 2(c) ,  the decomposition with 
damped sinusoids does not introduce a pre-echo. 

For the signal in Figure 2(a), the dictionary of damped si- 
nusoids outperforms the symmetric dictionary with respect 
to representing the signal onset, which is particularly im- 
portant in music perception [6]. In general, 
symmetric decomposition does provide a reas 
sentation of the signal. This points to the CO 
the choice and design of dictionaries inherently depends on 
very specific properties desired for the representation. For 
instance, the symmetric decomposition yields a very smooth 
reconstruction in the early stages of the pursuit, which is 
appropriate in some signal approximation scenarios. In ar- 
bitrary cases, hybrid dictionaries may well prove most useful 
for representing basic signal structures. This issue of dic- 
tionary design is an open and extremely relevant question. 
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Figure 3. (a) The mean-squared reconstruction error uszng 
symmetric atoms and damped sinusoids, and (b) the energy 
in the pre-echo of the symmetric-atom decomposition. 

4. FUTURE WORK 
The use of matching pursuit for signal analysis has been ex- 
plored in the literature [9, 13, 141. In future work we plan 
to investigate applications to high-quality audio coding and 
to formalize the modification capabilities mentioned here. 
In light of its relationship to the other useful methods dis- 
cussed in this paper, we anticipate that the matching pur- 
suit approach for deriving parametric signal-adaptive time- 
frequency atomic decompositions will be effective for audio 
applications. For instance, we expect these atomic models 
to facilitate the use of psychoacoustic masking principles to 
improve compression performance. 
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