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Abstract

Time-frequency atomic models are useful for signal
analysis, modification, and coding, especially when the
time-frequency behavior of the atoms matches the behavior
of the signal. Such adaptive representations can be derived
using the matching pursuit algorithm with an overcomplete
dictionary of time-frequency atoms. In this paper, we con-
sider matching pursuit with atoms constructed by coupling
causal and anticausal damped sinusoids. These provide ad-
vantages over symmetric Gabor atoms for modeling signals
with transient behavior, such as music. Furthermore, the
matching pursuit computation is simplified by the structure
of the atoms; expansions based on these atoms can be de-
rived using simple recursive filter banks.

1 Atomic Decompositions

Time-frequency atomic signal representations have been
of growing interest since their explication by Gabor several
decades ago [1, 2]. The fundamental principles of atomic
modeling are that a signal can be decomposed into elemen-
tary functions that are localized in time-frequency and that
such decompositions are useful for applications such as sig-
nal analysis, modification, and coding. Familiar examples
of atomic models include basis expansions such as Fourier
and wavelet representations. Such basis expansions, how-
ever, exhibit substantial limitations for representing arbi-
trary signals; for instance, a Fourier basis provides a poor
representation of a time-localized signal. These limitations
result from the attempt to represent arbitrary signal behav-
ior in terms of a limited set of expansion functions. This
problem can be resolved by using overcomplete expansions,
wherein the expansion functions for a signal decomposition
are chosen from a highly redundant set whose elements ex-
hibit a wide range of time-frequency behaviors. Overcom-
plete expansions based on time-frequency dictionaries can
be derived using the matching pursuit algorithm [3].

1058-6393/98 $10.00 © 1998 IEEE

Martin Vetterli

Ecole Polytechnique Fédérale de Lausanne

Martin. Vetterli@de.epfl.ch

2 Matching Pursuit

Matching pursuit is a greedy iterative algorithm for de-
riving signal decompositions of the form

z[n] ~ Zaigi[n], (1

where the functions g;[n] are chosen from a dictionary of
atoms [3]. The pursuit starts by choosing the atom that best
approximates the signal in a two-norm sense. The contri-
bution of this atom is subtracted from the signal and the
process is iterated on the residual. For a dictionary D, the
task at the ¢-th stage of the algorithm is thus to find the atom
dmiy[n] € D that minimizes the two-norm of the residual

rivi[n] = riln] — aidn )R], 2

where (%) is a dictionary index and «; is the coefficient of
the atom in the model being derived; note that r [n] = z[n].
The atom chosen at the ¢-th stage will hercafter be denoted
by gi[n] = dpn[n], where i refers to the iteration when
gi[n] was chosen and m(3) is the index of the atom in D.

Treating the signals as column vectors, the optimal atom
to choose at the ¢-th stage can be expressed as

. 2 . 2
e , — C—oasasll?. 3
gi = arg min [[rip||° = arg min |lr; — eigill”.  (3)
For unit-norm atoms, Eq. (3) can be reformulated as
g: = arg max 1{gi, 7). “

The coefficient for the model is a; = (g, 7:) = gr;.

To enable representation of a wide range of signal fea-
tures, a large dictionary of atoms is used in the match-
ing pursuit algorithm. The computation of the correlations
{g,7;) for all g € D is thus expensive. The computational
cost can be reduced by using an update formula based on
Eq. (2); the correlations at stage ¢ + 1 are given by

(g,riv1) = (g,7ri) — oilg, i), , 5)

where the dictionary cross-correlation term (g, g;} can be
precomputed and stored [3].
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Figure 1. Gabor atoms derived from a symmetric
window by scaling, modulation, and translation.

3 Time-Frequency Dictionaries

In an atomic decomposition derived by matching pur-
suit, the atoms correspond to basic signal features. This is
especially useful for analysis and coding if the atoms can be
described by meaningful parameters such as time location,
frequency modulation, and scale; then, the basic signal fea-
tures can be identified and parameterized. Matching pursuit
using a parametric overcomplete dictionary consisting of a
wide variety of time-frequency atoms provides a compact,
adaptive, and parametric signal model [3, 4].

3.1 Gabor Atoms

In matching pursuit, dictionaries of Gabor atoms have
been of primary interest since these are appropriate func-
tions for general time-frequency signal expansions [1, 3]. In
continuous time, such atoms are derived from a unit-norm
window g(¢) by scaling, modulation, and translation:

$

1 n— .
g{s’wﬂ_}(t) = ﬁg( T> eiw(n=7)_ (6)

A sampling argument indicates that Gabor atoms can be ex-
pressed in discrete time as

g{81w’f}[n] = fs[n — To]ejw(n—-r), (7

where fs[n] is a unit-norm window of scale s [3]. Exam-
ples of Gabor atoms are given in Fig. 1. Note that these
atoms can be indexed in a dictionary by the parameter set
{8, w, 7}; this parametric structure allows for a simple de-
scription of a specific dictionary, which is useful for com-
pression. Also, note that the modulation of an atom can
be defined independently of the time shift, or dereferenced,
which will be useful in later considerations:

g{s,w,r}[n] - fa[n_TO]ejwn = ejwrg{s,w,’r}[n]' ®

In applications of Gabor functions, g[n] is typically an
even-symmetric window. The associated dictionaries thus
consist of atoms that exhibit symmetric time-domain be-
havior. This is problematic for modeling asymmetric fea-
tures such as transients, which occur frequently in natural
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Figure 2. Pre-echo in atomic models: (a) the onset
of a damped sinusoid, (b) the first atom chosen from a
symmetric Gabor dictionary by matching pursuit, and
(¢) the residual.

signals. Fig. 2 shows the pre-echo artifact that is intro-
duced in the reconstruction if a simple transient is modeled
with a symmetric Gabor dictionary [S]. The residual has a
discontinuity at the onset time; later stages of the pursuit
must incorporate small-scale atoms into the decomposition
to model this discontinuity. One approach to this problem is
the high-resolution pursuit proposed in [6, 7], where sym-
metric atoms are still used but the selection metric is modi-
fied so that atoms that introduce drastic artifacts are not cho-
sen for the decomposition. Given that symmetric functions
are intrinsically not well suited for modeling asymmetric
events, another approach of interest for modeling signals
with transient behavior is the use of a dictionary of asym-
metric atoms, e.g. damped sinusoids.

3.2 Damped Sinusoids

In [4, 5, 8], time-frequency dictionaries of damped sinu-
soids are used to improve the representation of transients;
such approaches are motivated by the common occurrence
of damped oscillations in natural signals. Like the atoms in
a general Gabor dictionary, damped sinusoidal atoms can be
indexed by characteristic parameters, namely the damping
factor a, modulation frequency w, and start time 7:

Hawrln] = Saa™ e un—1), (9
or, if the modulation is dereferenced,
G{aw,r3n] = Sa a(”_’")ej“’"u[n -7, (10)

where the factor S, accounts for unit-norm scaling. Exam-
ples are given in Fig. 3. Note that these atoms correspond
t0 Gabor functions derived from a one-sided exponential
window; the atomic structure is more readily indicated by
a damping factor than a scale parameter, however, so the
index set {a,w, 7} is used instead of the set {s,w, T}
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Figure 3. Damped sinusoids: Gabor atoms based on
a one-sided exponential window.

3.3 Composite Atoms

The simple example of Fig. 2 shows that symmetric
atoms are inappropriate for modeling some signals. It is
simple to construct examples for which asymmetric atoms
prove similarly ineffective. Given the task of modeling ar-
bitrary signals, it can thus be argued that a wide range of
both symmetric and asymmetric atoms should be present
in the dictionary. Such composite dictionaries are consid-
ered here. Due to computational advantages that will be dis-
cussed later, atoms constructed by coupling causal and an-
ticausal damped sinusoids are of particular interest. These
atoms take the form

Yaptwnltl = fapnlh -7, an

or, if the modulation is dereferenced,

apdwninl = flapnln -1, (12)
where the amplitude envelope is a unit-norm function con-
structed using a causal and an anticausal exponential:

flapny[n] = (13)
Stap,} (@™u[n] + b~ "u[—n] — &[n]) * hs[n],

where &[n] is subtracted because the causal and anticausal
components overlap at n = 0. The function hy[n] is a
smoothing window of length J. A variety of composite
atoms are depicted in Fig. 4; these can exhibit a wide range
of time-frequency behaviors and can be described by the
simple parameter set {a, b, J,w, T}

The unit-norm scaling factor for a composite atom is

1
I S —
{a,b,J} T(a, b, J)

where T'(a,b, J) is given by

Z |(a™uln] + b~ "u[—n] ~ &[n]) * hJ[n]|2 = (195

(14)

J=1J-1 | |t—k| [t—E&} 11—~k
a b a b—ab
Y + + (16)
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Figure 4. Composite atoms constructed by coupling
causal and anticausal damped sinusoids and using
low-order smoothing.

Precomputation of this scale factor is required for pursuit
based on these atoms.

The composite atoms described above can be written in
terms of unit-norm constituent atoms:

g{a,b,.],w,‘r}[n] =
(17)

~+ ——
Trawn®l G50l
S{a,b,J}( {owr} 2 | THbwir) —8[n] | * hyln),

S, Sp

where gy, , 1[n] is a causal atom and gy, , 4[n] is an an-

ticausal atom defined as
ga,w,'r'} [n] = Sb b—(n—‘r)ejwnu[_(n - T)] (18)
For a rectangular h y[n], the convolution in Eq. (17) can be

rewritten as

J-1 =+ a5,
> aw,rrayl] + Ipwreayl® dn+ AL (19
A=0 Sa 5

Note that dereferenced atoms are used in the construction
so that their modulations add coherently in the sum over the
time lags A; otherwise, a phase shift of wA would be re-
quired for each atom to achieve coherent modulation of the
composite atom. As will be seen in Section 4.2, this con-
struction framework leads to a simple relationship between
the correlations of the signal with the composite atom and
with the underlying damped sinusoids.

The special case of symmetric atoms (a = b), one exam-
ple of which is shown in Fig. 4, suggests the use of this
approach to construct atoms similar to symmetric Gabor
atoms based on common windows. Given a unit-norm win-
dow w[n], the issue is to choose a damping factor a and a
smoothing order J such that the resultant fy, o s} [n] is sim-
ilar to w(n]. Using the two-norm as an accuracy meltric, the
objective is to minimize the error

(@, ) = |If{a,a0}n] = wh]|]? (20)

by optimizing @ and J. Since fy, 4 s3[n] and w(n] are both
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Figure 5. The envelope for a symmetric composite
atom (solid) can be constructed to match a Hanning
window (dashed) and a Gaussian window (dotted).

unit-norm, this expression can be simplified to:

e(a,J) = 2 (1—2 f{a,a,J}[n]w[n]) 1))

The overall objective of the optimization is thus to maxi-
mize the correlation of fi, o,73[n] and win],

&a,J) = flaas3nlwln]. (22)

In an implementation, this would not be an on-line opera-
tion but rather a precomputation indicating values of ¢ and
J to be used in the parameter set of the composite dictio-
nary; interestingly, this precomputation itself resembles a
matching pursuit. Note that the values of a and J for the
f{a,a,73[n] in the composite dictionary are based on the
scales of symmetric behavior to be included in the dictio-
nary. Presumably, closed form solutions for ¢ and J can
be found for some particular windows; such solutions are
of course limited by the requirement that J be an integer.
The intent of this discussion, however, is not to investi-
gate a window matching algorithm but instead to provide
an existence proof that symmetric atoms constructed with
one-sided exponentials can reasonably mimic Gabor atoms
based on standard symmetric windows. Fig. 5 shows an
example of an unmodulated composite atom that roughly
matches a Hanning window and a Gaussian window.

It has been demonstrated that a composite dictionary
containing a wide range of symmetric and asymmetric
atoms can be constructed from uniform dictionaries of
causal and anticausal damped sinusoids. Atoms resembling
common symmetric Gabor atoms can readily be generated,
meaning that this approach can be tailored to include stan-
dard symmetric atoms as a dictionary subset; there is no
generality lost by constructing atoms in this fashion. As will
be shown in Section 4.1, the pursuit computation for dictio-
naries of damped sinusoids is inexpensive; this leads to the
algorithm of Section 4.2, namely a low cost implementation
of matching pursuit based on a composite dictionary.

4 Computation Using Recursive Filter Banks

For arbitrary dictionaries, the computational cost of the
matching pursuit iteration can be reduced using the update
relation in Eq. (5). For dictionaries consisting of damped
sinusoids or composite atoms constructed as described in
Section 3.3, the correlation computation can be carried
out with simple recursive filter banks. This computational
framework is developed in the following two sections.

4.1 Pursuit of Damped Sinusoidal Atoms

In matching pursuit using a dictionary of complex
damped sinusoids, correlations must be computed for ev-
ery combination of damping factor, modulation frequency,
and time shift. The correlation of a signal z[n] with a causal
atom g, , 4[n] is given by

r+L—1
t(a,w,7) = S, Z z[n] a® e~ (23)
n=r

where L is a truncation length that can be imposed on the
atom. Truncation will not be considered further here; more
details can be found in [4, 5]. A further simplification is that
correlations with unnormalized atoms will be considered:

r4L-1
p+la,w, ) = E z[n] a(n—Tle=iw(n-1) (24)
N+ (tg w,T) 25)

a

Formulating the algorithm in terms of unnormalized atoms
will reduce the computational cost of the algorithm devel-
oped in Section 4.2 for pursuing composite atoms.

The exponential structure of the atoms can be used to re-
duce the cost of the correlation computation over the time
index; correlations at neighboring times are related by a
simple recursion:

p+(a,,w,T— 1) = ae—jup+(a7w77—) + Il?[T - 1] (26)

This is just a one-pole filter operated in reversed time to
make the recursion stable for causal damped sinusoids; the
similar forward recursion is unstable for @ < 1. For anti-
causal atoms, the correlations are given by the recursion

p-(bw,7+1) = bep_(bw,7) + z[r+1], 27

which is operated in forward time for the sake of stabil-
ity. This formulation shows that the structure of damped
sinusoidal atoms can be exploited to simplify the corre-
lation computation irrespective of the update formula in
Eq. (5). Similar simplifications based on recursive com-
putation have been reported in the literature for short-time
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Fourier transforms using exponential windows [9] as well
as more general cases [10].

The results given above hold for atoms whose modula-
tion is referenced to the atomic time origin as in Egs. (6),
(9), and (11). This local time reference leads to an inter-
pretation of the pursuit computation in terms of a recursive
filter bank. For the construction and pursuit of composite
atoms, however, the dereferenced atoms defined in Eqs (8),
(10), and (12) are of importance. The correlation formulae
for dereferenced damped sinusoids can be derived by com-
bining Eq. (8) with Eq. (24) to arrive at:

pr(a,w,7) = €7 p, (a,w, ). (28)

Egs. (26) and (27) can then be reformulated as

pila,w,7—1) = (29)
apy (a,w,7) + e Vg[r — 1]
po(byw,T+1) = (30)

bpy (b, w, ) + eI glr 4 1].

For dereferenced modulation, the correlation computation
thus corresponds to modulating the signal and using base-
band filters [4]. As will be seen in the next section, deref-
erencing the modulation leads to a simple relationship be-
tween the signal correlations with composite atoms and the
correlations with underlying damped sinusoids.

4,2 Pursuit of Composite Atoms

Using matching pursuit to derive a signal model based on
composite atoms requires computation of the correlations of
the signal with these atoms. Recalling the form of the com-
posite atoms given in Eqs. (17) and (19), these correlations
have, by construction, a simple relationship to the correla-
tions with the underlying one-sided atoms:

ﬁ(ah b3 J’w’ T) = S{a,b,J} X 3D
J-1
7 A f_
Z [77+(a7w7T+ ) + n (bvw7T+A) _ $[T+A]
A=0 Sa Sp

The sum can be rewritten in terms of correlations with un-
normalized atoms:

J-1
Z Prla,w, 7+ A) + p_(byw, 7+ A) — z[r +A].

A=0
(32
The correlation with any composite atom can thus be com-
puted based on the correlations derived by the recursive
filter banks discussed earlier; this computation is most
straightforward if the underlying atoms are dereferenced
and unnormalized. Once the underlying correlations have

been derived, any atom constructed according to Eq. (19)
can be added to the modeling dictionary at the cost of one
multiply per atom to account for scaling. For a detailed
computational consideration, including a comparison with
the update approach of Eq. (5), the reader is referred to [4].
Finally, it should be noted that the computations given
herein for atoms with complex modulation can be readily
extended for deriving real models of real signals [5].

5 Conclusion

Atoms based on underlying exponential structures can
exhibit a wide range of symmetric and asymmetric time-
frequency behaviors. Dictionaries consisting of such atoms
are useful for matching pursuit since the required corre-
lation computations can be carried out with simple recur-
sive filter banks. Future work involves application of such
atomic models for audio coding and modification.
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