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ABSTRACT

The method of wavelet thresholding for removing noise,
or denoising, has been researched extensively due to its
effectiveness and simplicity. Much of the work has been
concentrated on finding the best uniform threshold or best
basis. However, not much has been done to make this
method adaptive to spatially changing statistics which is
typical of a large class of images. This work proposes a
spatially adaptive wavelet thresholding method based on
context modeling, a common technique used in image com-
pression to adapt the coder to the non-stationarity of im-
ages. We model each coeflicient as a random variable with
the Generalized Gaussian prior with unknown parameters.
Context modeling is used to estimate the parameters for
each coeficient, which are then used to adapt the thresh-
olding strategy. Experimental results show that spatially
adaptive wavelet thresholding yields significantly superior
image quality and lower MSE than optimal uniform thresh-
olding.

1. INTRODUCTION

In this paper we address the classical problem of removing
additive noise from a corrupted image, or denoising. In re-
cent years there has been a plethora of work on using wavelet
thresholding [3] for denoising, in both the signal processing
and statistics community, due to its effectiveness and sim-
plicity. In its most basic form, this technique denoises in the
orthogonal wavelet domain, where each coefficient is thresh-
olded by comparing against a threshold; if the coefficient is
smaller than the threshold, it is set to zero, otherwise it is
kept or modified. The intuition is that because the wavelet
transform is good at energy compaction, small coefficients
are more likely due to noise, and large coefficients due to im-
portant signal features (such as edges). The threshold thus
acts as an oracle deciding whether or not to keep the coef-
ficients. Most of the literature thus far has concentrated on
developing threshold selection methods, with the threshold
being uniform or at best one threshold for each subband.
Very little has been done on developing thresholds that are
adaptive to different spatial characteristics. Other works
investigate the choice of wavelet coefficient expansion for
the thresholding framework. One particularly interesting
result is that thresholding in a shift-invariant expansion
(dubbed translation-invariant (TI) denoising by Coifman
and Donoho [2]) eliminates some of the unpleasant artifacts
introduced by modifying the coefficients of the orthogonal
wavelet expansion. In this paper, we use the wisdom that
thresholding in a shift-invariant, overcomplete representa-~
tion outperforms the orthogonal basis, and also investigate
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an issue that has not been explored, namely, the spatial
adaptivity of the threshold value.

A spatially adaptive thresholding strategy is needed be-
cause sometimes a uniform threshold is not good enough.
The essence of a threshold is that it should be large enough
to kill the noise, but small enough to keep the signal fea-
tures. However, when the noise coefficients happen to be
larger than the signal coefficients, it may not possible to
accomplish both goals with just one threshold. Thus, if we
can extract additional information from the image to dis-
tinguish between the important and noisy coeflicients, then
adaptive thresholds can be used to reap both the benefits of
keeping the important signal features while removing most
of the noise.

Most natural images have non-stationary properties,
since they typically consist of regions of smoothness and
sharp transitions. These regions of varying characteristics
can be well differentiated in the wavelet domain, as can be
seen in the wavelet decomposition of the lena image in Fig-
ure 1. One observes areas of high and low energy (or large
and small coefficient magnitude), represented by white and
black pixels, respectively. Areas of high energy correspond
to signal features of sharp variation such as edges and tex-
tures; areas of low energy correspond to smooth regions.
When noise is added, it tends to increase the magnitude of
the wavelet coefficient on average. Specifically, in smooth
regions, one expects the coefficients to be dominated by
noise, thus most of these coefficients should be removed,
especially since noise is highly visible here. In regions of
sharp transition, the coefficients have a lot of energy due to
the signal, and some due to noise (which is not as visible in
these regions), thus they should be kept, or at most modi-
fied only a little, to ensure that most of the signal details are
retained. Thus, the idea is to distinguish between the low
and high energy regions, and modify the coefficients using
a spatially adaptive thresholding strategy.

It has long been accepted in the subband coding com-
munity that for a large class of images, the coefficients in
each subband form a distribution well described by the Gen-
eralized Gaussian prior [7]. The classification-based com-
pression method in [8] found that these coefficients can be
further clustered into several subgroups, each described by
this distribution but of different parameters. The cluster-
ing of the coefficients is based on context-modeling, a pop-
ular method used in compression for differentiating pixels
of varied characteristics. Thus, context-modeling allows us
to model each coefficient as a Generalized Gaussian random
variable with varying parameters. Now, given that we can
estimate the parameters for each coefficient, the next step
is to use them to calculate the threshold. In [1], we found
that when the signal coefficients are modeled as Generalized



Figure 1. Four level wavelet decomposition of lena.
White pixels indicate large magnitude coefficients,
and black signifies small magnitude.

Gaussian random variables and the noise as Gaussian, the
threshold T = ¢?/o, is a good approximation to the opti-
mal threshold which minimizes the mean squared error of
the thresholding estimator, where o2 is the noise power, and
o is the standard deviation of the signal. The simplicity of
this threshold makes it easy to achieve spatial adaptivity —
one only needs to quantify the local characteristic in o5 to
make the threshold T' adaptive on a pixel-by-pixel manner.

Our proposed algorithm is based on using adaptive
thresholding in the overcomplete wavelet expansion. This
method outperforms both using only adaptive thresholding
in the orthogonal expansion or using only uniform thresh-
olding in the overcomplete expansion like the TI denoising.
That is, by combining both features, we achieve results
which are significantly more superior than either method
alone. The organization of this paper is as follows. In Sec-
tion 2, we introduce the threshold selection method when
there is only one class of Generalized Gaussian distributed
random variable corrupted by additive Gaussian noise. Be-
cause this threshold selection is based on #id noise assump-
tion, the discussion will first set in the orthogonal wavelet
transform. Then context modeling is introduced to allow
each coefficient be modeled as random variables of differ-
ent parameters, and the parameters are used to make the
threshold spatially adaptive. Finally, we discuss how to
extend this adaptive method in the orthogonal expansion
to the overcomplete expansion. In Section 3, we will com-
pare the spatially adaptive results with those from the best
uniform thresholding strategy (in the mean squared error
sense), in both the orthogonal and overcomplete expansion,
and show that the combination of using spatially adaptive
thresholding and overcomplete expansion yields superior re-
sults in both the visual quality and the mean squared error.

2. ADAPTIVE ALGORITHM

The adaptive algorithm will be developed in the following
manner. First, we introduce the concept of modeling the or-
thogonal wavelet coefficients by the Generalized Gaussian
prior (with unknown parameters), and develop a thresh-
old selection method when the coefficients are corrupted by
Gaussian noise. Then context modeling is used to model
each coefficient as a random variable with different unknown
parameters, allowing essentially an infinite mixture of dis-
tributions. The threshold for each coefficient is adjusted
according to the estimated parameters for that coefficient.
Lastly, since the aforementioned algorithm is developed in
the orthogonal expansion where the coefficients are uncor-
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Figure 2. Subbands of the orthogonal discrete
wavelet transform(DW'T), also showing the parent-
child relationship.

related, we will need to take care in extending it to the
overcomplete expansion, where coefficients are correlated.

2.1. Coefficient Modeling and Threshold Selection
Let the corrupted image model be

ylig] = fli. 1 + el 34,5 =1,..., N,

where f[i, j] is the original image, and e[i, j] are 4id N (0, o%)
and independent of f[1, j]. The goal is to recover f[i, j] from
the noisy observations yli, j].

To accomplish wavelet thresholding for denoising, the ob-
servations {y[¢,j]} are first transformed into the wavelet
domain. The necessary notations for the wavelet transform
will be introduced here, and the readers are referred to ref-
erences such as [5, 6] for more details. The 2D discrete
orthogonal wavelet transform (DWT) can be implemented
as a critically sampled octave-band filter bank, where sep-
arable filtering is used. It is often convenient to cluster
these coefficients into groups or subbands of different scales
and orientations as in Figure 2, where, for example, the
label HL; refers to those coefficients at the first scale of de-
composition which are the output of the highpass filter in
the horizontal direction and the lowpass filter in the verti-
cal direction. Let Y4, j],4,7 = 1,..., N/2°, denote the
wavelet coefficients of y[z, j] at a particular scale s and orien-
tation o, where s =1,2,...,Jand o € {HL,LH,HH,LL}.

It has been observed that for a large class of im-
ages, the coefficients from each subband (except LL)
form a symmetric distribution that is sharply peaked at
zero, well described by the Generalized Gaussian distribu-

tion [7], GGap(z) = Cla, B)e= @D’ where C(a,8) =

21“1(3!‘) and I'(t) = [;° e “u''du is the gamma function.

Let X[, 5] and V), j] denote the wavelet coeffi-
cients of the original signal f[¢,5] and the mnoise 3, j],
respectively. For each subband, the signal coefficients

X ()4, 4] are modeled as independent samples of distri-
bution, px(z) = GGa g(x), and the noise as independent
samples of the Gaussian distribution, pv (v) = ¢(v,0?) =
1/vV2no?exp — 5‘—’;5 If we restrict the estimator to be a soft-
threshold estimator of the form X*[i, 5] = nr (Y3, j]),
where n7(z) = sgn(z) - max(|z| — T,0), then the optimal
threshold T™ is defined to be the argument which minimizes
the expected squared error,

T" = arg min Eyvix,x(nr(Y) — X)? 1)



where Y|X ~ ¢(y — z,0°) and X ~ GGa a(z). In [1], we
found that T* can be well approximated by 7 = 02/0s,
where o, is the standard deviation of X. Thus, by estimat-
ing the standard deviation of the signal coefficients in each
subband, we have a uniform threshold that is adaptive to
each subband characteristic. Note that it is not necessary to
explicitly estimate the parameters «, 3 since the standard
deviation suffices for our purpose.

The threshold T = ¢% /s is not only nearly optimal but
also has an intuitive appeal. For such a choice, the nor-
malized threshold T'/o is inversely proportional to oz, the
standard deviation of X, and proportional to o, the noise
standard deviation. When o/o. < 1, the signal is much
stronger than the noise, thus T'/o is chosen to be small in
order to preserve most of the signal and remove some of
the noise; vice versa, when o /o, > 1, the noise dominates
and the normalized threshold is chosen to be large to re-
move the noise which has overwhelmed the signal. Thus,
this threshold choice adapts to both the signal and noise
characteristics reflected in the parameters o and o..

2.2. Context Modeling for Spatial Adaptivity

To make the threshold T' spatially adaptive, we need to
develop a method to estimate o, locally, not just at the
subband level. To do this, we adopt the contert model-
ing idea used frequently in image compression for adapting
the coder to changing image characteristics. That is, the
statistical model for a given coefficient is conditioned on a
function of its neighbors. In the wavelet-based compres-
sion scheme in [8], context modeling was used to further
categorize coefficients into several classes of varied activity
levels within each subband, that is, classes of Generalized
Gaussian distribution with different parameters o, 3. The
distribution parameters are estimated from the coefficients
for each class, which are then used to adapt the coder. Since
the description of each class and the distribution parame-
ters needs to be sent as overhead, only four classes were
used in [8]. For the denoising problem, there is no need to
conserve bits, thus it is not necessary to explicitly classify
the pixels, and parameters can be estimated for each coef-
ficient (rather than for each class), resulting in virtually an
infinite mixture of distributions.

Consider one particular subband with M? coefficients,
and a particular pixel ¥ )[4, j] at location index [, 5]. To
simplify notation, we drop the superscript (s, o), and use it
only when necessary for clarity. Each coefficient YT[¢, j] is
modeled as a random variable whose variance can be esti-
mated as follows. Consider a neighborhood of Y[z, 51, whose
p elements are placed in a p X 1 vector u;;. One possible
choice is the eight nearest neighbors of Y[z, 5] in the same
subband, plus its parent coefficient Y +10)[[i/2],[5/2]]
(see Figure 2 for the definition of parent-child relationship).
To characterize the activity level of the current pixel, we
calculate a weighted average of the absolute value of the
neighbors, Z[i,j] = w” |uij| . The weights w is found by
using the least squares estimate, that is,

w' = argmin ) J(V[i, j]—w” fuigl)” = (U 1U)”

]

W'y

where U is a M? x p matrix with each row being “m for all
4,7, and Y is the M2 x 1 vector containing all coefficients
Y[i, j].
The variance of coefficient Y[¢, j] is estimated from other
coefficients whose context lie in the interval [Z[i,j] —
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Figure 3. A sample plot of {Z[i,;],Y[i ,jl}; where
Y{i,j] is the noisy wavelet coefficient, and Z[i, j] is
its context. A collection of Y, j] w1th small values
of Z[i, j] have a smaller spread than those with large
values of Z[i,j], suggesting that context modeling

provides a good variability estimate of Y3, j].

A1, Z[i,j] + Az]. To develop an intuition for this, it
is helpful to examine Figure 3, which plots the pairs
{Z[i, 1, Y[3,41},4,5 = 1,..., M. The points are clustered
within a cone shape centered at origin. Taking an interval of
small valued Z[i, 5], the associated coefficients {Y[i, j]} have
a small spread; on the other hand, an interval of large val-
ued Z[i, j] has corresponding {Y[i, ]} with a larger spread
(the intervals are of different widths to capture the same
number of points). This suggests that the context provides
a good indication of local variability. Thus, for a given co-
efficient Y'[io, jo], we place an interval around Zlio, jo], and
the variance of Y[zo, jo] is estimated from the points Y'[i, j]
whose context falls within this window. In particular, we
take L closest points above Z [¢0, jo] and L closest points be-
low, resulting in a total of 2L + 1 points, where we choose
L = max(50, M?/ 10) to ensure that enough points are used
to estimate the variance. Note that this is a moving window
rather than the fixed classes in [8], and thus allows a contin-
uous range of estimate values. Let B;y;, denote the set of
points {Y[z, j]} whose context falls in the moving window.
The estimate of the variance o2 [io, jo] is then

>

Y {k,£)€Biy 50

NI 1
&2lio, jo] = max | ooy Y[k, € - o%,0

The term o needs to be subtracted because {Y[i, 7]} are
the noisy observations, and the noise is independent of the
sxgnal with variance ¢2. The threshold at location [io, jo]
is then

02

bzli, 4]
Calculating the threshold T;; for every location [i, j] yields a

spatially adaptive thresholding strategy. In the implemen-
tation, the context {Z[i, j]} are first sorted, and a moving

Tigjo =



window is pla,ced over them, so the set B;; and the variance
estimate 2[i, j] can be updated efficiently.

There are several noteworthy remarks to be made about
our proposed approach. One may ask why the local vari-
ance is not estimated from, say, a local window, but rather
from an indirect way of grouping the coefficients first via its
context. Estimating from a local neighborhood is simple,
and, as demonstrated by the good performance of the image
coder in [4], it yields an estimate good enough for adapting
the coder. However, our experience with noisy images show
that such an estimate yields considerably more unreliable
variance estimates and also blotchy denoised image. This is
because the estimate is highly sensitive to the window size
we choose: a small window contains few points and thus
yields unreliable estimates; a large window adapts slowly
to different characteristics. The context-based grouping al-
lows one to congregate those coefficients with similar con-
text though not necessarily spatially adjacent. It also allows
a large number of coefficients to be used in the variance es-
timation, thus yielding a more reliable estimate. Via some
simulations, we find that the neighborhood choice B;; and
the weight w used in the context calculation is not very
sensitive, as a simple equally weighted average of the eight
nearest neighbors yield approximately the same result.

Up to now we have not discussed how to estimate the
noise varlance o?. In some practical cases, it is possible to
measure o2 based on information other than the corrupted
observation. If this is not the case, we estimate it by using
the robust median estimator in the highest subband of the
wavelet transform, & = Median(|Y[¢, 5]|)/.6745, Y[i,j] €

subband HHj, also used in [3].

2.3. Thresholding in Overcomplete Expansion

Thresholding in the orthogonal wavelet domain produces
significantly noticeable artifacts such as Gibbs-like ring-
ing and blips. To ameliorate this unpleasant phenomenon,
Coifman and Donoho [2] proposed the translation-invariant
(TI) denoising. Let Shift,, ,[-] denote the operation of cir-
cularly shifting the 1nput by k indices in the vertical di-
rection and £ indices in the horizontal, and let Unshift, ,[-]
be a similar operation but in the opposite direction. Also,
let Denoise[-, T] denote the operation of taking the DWT
of an input signal, threshold it with a chosen uniform
threshold T, then transform it back to the space domain.
Then the TI denoising yields an output which is the av-
erage of the thresholded copies over all possible shifts:

f= Z“ o Unshifty [ Denoise[Shifty 4[y], T)]. The ra-
tlonale is that since the orthogonal wavelet transform is
a time-varying transform and thresholding the coefficients
produces ringing-like phenomena, thresholding a shifted in-
put would produce ringing at different locations, and av-
eraging over all different shifts would yield an output with
more attenuated artifacts than a single copy alone. TI de-
noising can be shown to be equivalent to thresholding in
the overcomplete representation implemented by the non-
subsampled filter bank as will be described below, up to some
scaling in the thresholds. It has been shown to remove some
of the ringing artifacts, because denoising in the redundant
expansion can be interpreted as an additional averaging.
Thus we proceed to extend our spatial adaptive algorithm
to this redundant expansion.

The adaptive algorithm in the orthogonal basis described
above can easily be extended to the overcomplete basis.
Now consider the same orthogonal filters but used in a fil-
ter bank without downsampler (see [6] for more detail on
non-subsampled filter banks). The filters are renormalized
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Table 1. Comparing the MSE of the spatially
adaptive algorithm with optimal subband uniform
threshold in the DWT and overcomplete expansion
for various test images and o.

MSE/o [[125 ] 15 [ 20 [ 225 [ 25
barbara
AdaptDWT || 61.4 | 78.3 | 111.6 | 127.5 | 144.8
“OrcUnifDWT || 62.2 | 80.7 | 117.3 | 136.8 | 155.0
AdaptNS || 43.5 [ 56.0 | 83.1 | 97.5 | 112.2
OrcUnifNS || 51.2 | 66.3 | 96.7 | 112.0 | 128.2
lena

AdaptDWT [ 36.1 | 42.7 | 58.1 66.5 72.9
OrcUnif DWT || 36.1 | 43.7 | 58.8 67.4 73.7
AdaptNS [ 27.5 | 32.7 | 44.1 | 51.1 56.5

OrcUnifNS || 29.8 | 35.9 | 48.7 55.7 61.2

by 1/4/2 so that coefficient energy stays bounded. This
decomposition is a redundant representation, and there are
correlations between the decomposition coefficients. Specif-
ically, at the first level of decomposition, the odd and even
coeflicients are correlated. Thus, we can separate the co-
efficients into four sets of uncorrelated coefficients, namely,
{Y[23, 251}, {Y[2¢, 25 +1]}, {Y[2¢+1, 25]} and {Y[25+1,25+
1]}. For the s-th level decomposition, the coeflicients can
be separated into 22 sets, each containing uncorrelated co-
efficients, and they are {Y[2°% + k1,2°5 + k2]}ij, k1, k2 =
0,1,...,2° — 1. Since each set contains uncorrelated coef-
ficients, the noise are also 7id within each set as well, and
thus the adaptive algorithm can be used for each set of
coefficients. This approach let us circumvent the issue of
denoising correlated coefficients with colored noise, which
is not an easy task. There are several other minor details
in this implementation. Firstly, one needs to alter the noise
power o at each decomposition scale to a?/4° due to the
renormalization of the filters. Secondly, the definition of the
parent coefficient used in the neighborhood of the context
is slightly changed: the parent of a coeflicient in scale s is
simply the coefficient at the same spatial location in scale
s+ 1.

3. EXPERIMENTAL RESULTS

We use the images barbara and lena as test images. ud
Gaussian noise at different levels of o? are generated using
randn in MATLAB. For the orthogonal wavelet transform,
four levels of decomposition are used, and the wavelet em-
ployed is Daubechies’ symmlet with 8 vanishing moments.
There are four methods that we compare, and the MSE re-
sults are shown in Table 1. The AdaptDWT method refers
to the proposed adaptive thresholding using the orthogonal
transformmn DWT, and AdaptNS refers to adaptive threshold-
ing using the non-subsampled wavelet transform. These two
are compared against the best uniform thresholding tech-
niques (in the MSE sense) when the original uncorrupted
image is assumed to be known. For thresholding with DWT,
in each subband, we find the oracle threshold To,. as

Tope = arg min [lnr (Y13, 5]) = X[, 5]11°

where Y[, j] and X[i, j] are the wavelet coefficients of the
noisy observation y and original image f, respectively. This
method is labeled OrcUnifDWT in Table 1. Similarly, this is
extended to the non-subsampled wavelet transform, where a



different threshold is found for each set of uncorrelated coef-
ficients within each subband (thus 2%* thresholds for a sub-
band at scale s). This method is labeled OrcUnifNS. Figure
4 shows a magnified region in the barbara image for o = 25.
The AdaptNS method outperforms all the other methods in
both visual quality and MSE performance. It yields signifi-
cantly less ringing artifacts and blotchiness than the meth-
ods using DWT. The OrcUnifNS method using uniform
thresholds in the non-subsampled framework still shows sig-
nificant noise in the smooth background. Thus, it is both
the spatial adaptive thresholds and the overcomplete rep-
resentation that contribute to the superior quality of the
AdaptNS method. The adaptive methods denoise better
especially in the flat regions, where the uniform methods
yields images with much noise and “blips”. Note that al-
though the MSEs for the lena image is similar between the
adaptive and uniform oracle methods, the visual quality in
the adaptive method is far superior as it produces a de-
noised image that is smooth in the flat regions and has less
artifacts around the edges as well.

4. CONCLUSION

We have proposed a simple and effective spatially and scale-
wise adaptive method for denoising via wavelet threshold-
ing in the overcomplete expansion. The issue of spatially
adapting the threshold values has not been addressed in
the literature. As we have shown in this paper, adapting
the threshold values to local signal energy allows us to keep
much of the edge and texture details, while eliminating most
of the noise in smooth regions. The results shows substan-
tial improvement over the best uniform thresholding, both
in visual quality and mean squared error.
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Comparing results of various de-
noising methods, for barbara corrupted by noise

Figure 4.

o = 25. From left to right, top to bottom:
original, noisy observation, adaptive threshold-
ing in DWT basis (AdaptDWT), uniform threshold-
ing in DWT basis (OrcUnifDWT), spatial thresh-
olding in overcomplete expansion (AdaptNS), and
uniform thresholding in overcomplete expan-
sion (OrcUnifNS). This figure can also be found
at http://www-wavelet.eecs.berkeley.edu/"grchang/
icip98SpatialDenoise.pgm .



