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Abstract

The common conception of transform coding is as a com-
putationally efficient alternative to vector quantization. At
high rates, it is not the partitioning itself but the efficiency
of the scalar entropy coding which makes transform cod-
ing useful. With this view, a class of discrete transforms
derived from linear transforms are used to pursue three ob-
Jectives: reducing coefficient entropies (getting coding gain
as in conventional transform coding), reducing the com-
plexity of entropy coding (allowing many coefficients to be
efficiently coded with identical entropy codes), and having
robustness to coefficient erasures.

1. Introduction

Virtually all image, audio, and video coding standards
use a structure consisting of a linear transform, scalar quan-
tization, and entropy coding, in that order. Zero-tree struc-
tures [11] and similar developments mix the quantization
and entropy coding to some degree, but it remains that the
transform is calculated on continuous-valued (or “full pre-
cision”) data.

Since the data will ultimately be represented coarsely, it
seems that it should be sufficient to compute the transform
coarsely.! Another approach that may reduce the complex-
ity of the transform is to compute the transform on a dis-
crete domain of about the same “size” as the final repre-
sentation. Computing the transform on a “smaller” domain
implies that the source is first quantized and then undergoes
a transform.

I This was explored in a preliminary fashion in [3, 6].
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This paper analyzes a few systems which combine—in
the unusual specified order—scalar quantization, transform,
and entropy coding. The use of discrete transforms provides
more design freedom than we can handle. By restricting at-
tention to a particular family of discrete transforms, we can
describe forward and inverse transforms simply and follow
principled design rules. The resulting systems provide op-
portunities for complexity reduction and reducing sensitiv-
ity to erasures.

The paper is organized as follows: Section 2 provides
areview of transform coding. Sections 3-5 give the results
on achieving coding gain, reduction in entropy-coding com-
plexity, and robustness to erasures using a class of discrete
transforms. This class of transforms is described in detail in
Appendix A.

2. Transform Coding: A Brief Review

In its simplest incarnation, transform coding is the repre-
sentation of a random vector z € R” by the following three
steps:

¢ A transform coefficient vector is computed as y = T'z,
T € R**™.

e Each transform coefficient is quantized by a scalar
quantizer: §; = ¢;(y;), i = 1, 2, ..., n. The over-
all quantizer is denoted @ : R* — R".

o An entropy code is applied to each quantized coeffi-
cient: E;(9;),1=1,2, ..., n.

The decoder reverses the steps to produce an estimate £.
The mean-squared error distortion of the scheme is
n~1E||z — £||2, where E is the expectation operator. The



rate is nE[Y, £(E;(9:))], where £(-) gives the length of
a codeword.

We will consider only the coding of i.i.d. jointly Gaus-
sian sources. Huang and Schultheiss [8] considered the
optimal design of the transform when Lloyd-Max (optimal
fixed-rate) quantizers are used. Under a mild condition on
the bit allocation, they showed that the transform should
be a Karhunen-Logve transform (KLT) of the source; i.e., a
transform that produces uncorrelated transform coefficients.

Using high rate approximations, it is easy to extend the
optimality of the KLT to entropy-coded unbounded uniform
quantization [3]. An (unbounded) uniform quantizer with
step size A maps an input variable to the nearest multiple
of A. This type of quantization will be assumed throughout
the paper and will be denoted [ - ]a. At high rates (small A),
the quantization error is uniform and the distortion is given
by

D = A?/12. )
Assuming ideal entropy coding, the rate for quantizing a
Gaussian random variable with variance o is a function of
A and the differential entropy of the source [2]:

R~ %log2 2mec? —log, A.

The average rate for the n transform coefficients is
' 1 kid i/n ~
R~ 5 log, 27re( H ‘73.») — log, A. )
=1

Combining (1) and (2) yields
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Why does transform coding work? An algebraic answer
is that the transform makes [ o2, < [ o2,, but this is not
very enlightening. The geometry of the situation is shown
in Figure 1. The ellipses represent level curves of the p.d.f.
of the source. Quantization in the original coordinates is
shown on the left, and quantization after the KLT is shown
on the right. Is the second partition any better than the first?
Put in another way, is Q(T'( - )) a better vector quantization
encoder mapping than Q( - )? In the high rate limit, the an-
swer is no, since either gives distortion D = A2%/12. Trans-
form coding does not improve the quantization, but rather
makes the scalar entropy coding that follows it work well;
if the entropy coding processed an entire vector at a time,
the transform would give no advantage.?

Since the quantization performance is not effected much
by the transform, we may try to replace the “T-Q-E”
structure of transform-quantization-entropy coding with a

2We are concerned here with high rates; at low rates it is hard to predict
the best coordinates for scalar quantization.
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Figure 1. Partitioning induced by uniform
scalar quantization with and without the ap-
plication of the Karhunen-Loéve transform.
The ellipses are level curves of the p.d.f. of
the source.

“Q-T-E” structure. Considering only linear transforms from
AZ™ to AZ™ would be too restrictive, but placing no
restriction on the transform gives more design freedom
than we can deal with well. Thus, to have easily imple-
mented transforms and to simplify the design process we
use only transforms which are derived from (continuous)
linear transforms, as described in Appendix A.

Discrete domain transforms can nearly achieve the cod-
ing gain of traditional transform coding, but at the same
time introduce other possibilities. Though the remainder of
the paper addresses the coding of Gaussian sources, the use
of discrete transforms extends the applicability of transform
coding to discrete sources, and perhaps to abstract alphabet
(non-numerical) sources. For simplicity most expressions
and all simulations are for two-dimensional sources.

3. Rate Reduction

In transform coding with quantization preceding trans-
form, the distortion is fixed (at approximately A2?/12) in-
dependent of the transform. The role of the transform is to
reduce the coded rate, but an invertible transform cannot ef-
fect the entropy for a discrete random variable [2]. This
seeming contradiction is resolved by again remembering
that we wish for the entropy coding to operate on scalars.

Denote the source by (z1,2), the transform by T, and
the transform coefficients by (y1,y2) = T'(¢1,22). In the
best case scenario, y; and y2 are independent, so we take
advantage of

H(z1) + H(z2) > H(zy, z2) = H(y1,y2) = H(y1) + H(y2),

where the left hand side is a lower bound on the rate with-
out the transform. We cannot normally expect to make y;
and y independent, but we can approximately achieve this
condition by choosing T" to be an approximation to a KLT
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Figure 2. Experiment showing that the coding gain of the (continuous) KLT is aimost matched by
a discrete transform which approximates the KLT. The horizontal axis gives the number of cells
covering [—6, 6] for each component quantizer. Legend entries indicate whether no transform, a KLT,
or a discrete approximation of the KLT was used; and whether the entropy coding is based on scalars
or vectors. (a) Rates based on empirical entropies; (b) Rates based on explicit Huffman codes.

for . Because the construction of the discrete transform
introduces only O(A) error (see Appendix A), in the high
rate limit y; and y» are independent.

This was experimentally confirmed with a two-
dimensional Gaussian source with correlation matrix

1 09
R = [ 09 1 ] '
The KLT is a 7/4 radian rotation. A comparison between
using no transform, using the KLT (before quantization),
and using a discrete approximation to the KLT is shown
in Figure 2. If the entropy coding operates on vectors
there is virtually no difference between the three transform
choices.> Removing the correlation in the source is impor-
tant with scalar entropy coding. The discrete transform per-
forms almost as well as the KLT; of course, it cannot per-

form better because the KLT makes the transform coeffi-
cients independent.

4. Complexity Reduction

The previous section demonstrated that a discrete trans-
form can do about as well as a continuous transform when
scalar entropy coding is to be used. It was implicit that

3The “no transform; vector” and “discrete T; vector” cases give pre-
cisely the same rates, as do “continuous T; vector” and “continuous T;
scalar.”
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each scalar entropy code was optimized to its correspond-
ing transform coefficient. Having n separate entropy codes
increases the memory requirements and is thus undesirable.
In the previous example, this could be seen as an argument
for using scalar entropy coding in the original coordinates,
despite the higher rate.

For simplicity, consider a source with independent com-
ponents: R, = diag(oZ , 02,), 0z, > 0q,. There is little
flexibility in the choice of continuous transforms since they
must be orthogonal to maintain cubic partition cells. For
this source, only trivial rotations of kn /2 radians do not in-
crease the rate (see (2)); thus, there is no hope to equalize
the p.d.f.’s of the transform coefficients without hurting the
rate-distortion performance. The family of discrete trans-
forms used here gives more flexibility. We need not start
with an orthogonal transform; any transform with determi-
nant 1 will suffice. Discrete transforms derived from initial
transforms of the form

Je o +o,}ao,, ]
F(2004,) ' 0g, 2a)~!

all give the optimal coding gain. In particular,

- a (2a)71
T= { —a (2a)71

o
} witha = [ —2 )
20,
gives optimal coding gain and produces transform coeffi-
cients with identical distributions. See [4] for a general
analysis of which this is a special case.
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Figure 3. Experiment showing that a discrete transform makes it possible to simultaneously achieve
optimal coding gain and use the same entropy code for each transform coefficient. The horizontal
axis gives the number of cells covering [—6, 6] for each component quantizer. Legend entries indicate
whether a transform is used and whether the separate entropy codes are used for each transform
coefficient. (a) Rates based on empirical entropies; (b) Rates based on explicit Huffman codes.

An experimental confirmation is shown in Figure 3. The
source was chosen to have the same power and eigenvalue
spread as in the previous example, so 031 1.9 and
‘73;2 = 0.1. Since the source components are independent,
the best case performance is to quantize and apply sepa-
rately optimized entropy codes to the two variables. How-
ever, when a discrete transform based on (4) is used, the best
performance is almost matched even with a single entropy
code applied to both transform coefficients.

Other manipulations of the transform coefficient vari-
ances may be useful. For example, the probability of a zero
coefficient effects both the efficacy of run-length coding and
decoding optimizations in the spirit of {9].

5. Erasure Resilience

The choice of « in (4) is the extreme case of an analy-
sis in [4]. Transforms of that form with larger values of
increase the rate, but in return improve the ability to recon-
struct from only one of the two transform coefficients. This
is useful in what is called multiple description coding.

The effect can be understood with reference to R,,. The
product of the diagonal elements of R, is increased, which
according to (2) increases the rate. At the same time, the
off-diagonal elements of R,, are no longer zero. This means
that the transform coefficients are correlated, and if one is
lost it can be estimated from the other [4, 10].
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A. Pseudo-linear Discrete Transforms

Recently, several researchers have proposed using invert-
ible discrete-domain to discrete-domain transforms [1, 7,
13]. They appear under various names (lossless transforms,
integer-to-integer transforms, lifting factorizations) and in
various flavors (finite dimensional matrices, or Fourier or
wavelet domain operators). All these transforms are based
on factorizations of matrices which make information flow
in a simple, regular way. Inversion can then be achieved by
reversing the information flow.

For example, one can factor any 2 x 2 matrix with de-
terminant 1 into three lower- and upper-triangular matrices
with unit diagonals:

a b 1 0 1 5] 1 0
c d =1 3l 1|fet 1|
\__'Z.\,___.z_,_/'_,_/
T T2 Ts
1 a—1 1 0 r 1 d—1
—[0 iHc 1] 0 i}‘(s)
| R —
T1 T2 T3
Since the inverse of a block 1 ? or (1] Z{ is sim-
ply [ _1 2 { é —1y , respectively, the inverse

of (5) can be found by reversing the order of the factors and



changing the signs of the off-diagonal elements.

The more profound fact is that the simplicity of inver-
sion remains if the off-diagonal elements represent nonlin-
ear functions. Let [-]a represent rounding to the nearest
multiple of A and let

1 a
nelle]
If x € AZ?, then
1 + azs w1+[aw2]A]
T = = .
maa= || 1 ] <[ 0

Thus [T7 - |a is an identity operator except for a nonlinear
function of z5 being added to z; . Direct computation shows
that on the domain AZ2, [T -] is the inverse operator. A
cascade of such operations is invertible in the same manner,
so a factorization T = T1T»T3 yields an invertible discrete
transform 7" : AZ?2 — AZ? “derived from T through

T(z) = [T1 [T2 [Tsz]p)z] 5 - (6)

The discrete transform T depends not only T, but the
factorization of T'. Among the possible factorizations, one
can minimize a bound on ||T(z) — T'z||. Let

10
c 1]|°

10 1 b
o v]ome]

01
For z € AZ?, the computation (6) involves three rounding
operations. Using §;’s to denote the roundoff errors gives

T(z)=T1<T2(T3z+[ 0 ])+[52D+{ 0 }

& 0 03
A
(1 + max{|b], a] + |1 + abl}) 5

Ty

],andT;;:[

Expanding and using T17>73 = T, one can compute

<

I7(@) - Te||,, <
This shows that T approximates 1" in a precise sense; in
particular, T'(z) ~ Tz when A is small.

For n x n matrices, the process is similar. T is fac-
tored into a product of matrices with unit diagonals and
nonzero off-diagonal elements only in one row or column:
T = T\Ts - - - Ty. The discrete version of the transform is
then given by

[T [Ts... [Tiz]ala] o -

The lifting structure ensures that the inverse of 7' can be
implemented by reversing the calculations.

The existence of such a factorization follows from the
fact that any nonsingular matrix can be reduced to an iden-
tity matrix by multiplication with elementary matrices [12].
Since our original matrix has determinant 1, it is sufficient
to consider the following three types of elementary matri-
ces:
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° El(;‘) s

e P;;, to exchange rows ¢ and j.

. Dg;‘),

to subtract a multiple A of row j from row i.

to multiply row ¢ by A and row j by 1/,

Ef])‘ ) is already in the desired form. The remaining two can
be factored as desired using the factorization of 2 x 2 ma-
trices above.
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