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ABSTRACT

State of the art audio coders exploit the redundancy in audio signals by shaping their quantization noise below the
signal’s masking curve, which is a signal-dependent threshold of audibility. This framework can be extended to the
context of data hiding, where the data play the role of noise. To minimize audio distortion the data power should be
closely adapted to the time-varying masking curve; each power switch, however, reduces the net throughput via its
associated side information. This tradeoff can be cast in a rate/distortion framework: the optimal sequence of power
levels and the optimal sequence of power switchpoints is found by minimizing a Lagrange cost functional relating
perceptual audio distortion to throughput, and is implemented as a linear-time trellis search. For 16-bit, 44.1 KHz
PCM stereo signals, a net throughput of the order of 30 kbits/sec can usually be achieved at no perceptual cost in
an algorithmically efficient way.
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1. INTRODUCTION

Data hiding, or steganography, is concerned with embedding data into a “host” message (the cover message) in a way
which is undetectable to an external observer; in this sense, it differs from cryptography (although the hidden data
can itself be encrypted) since the cover message remains unaltered and entirely meaningful from a perceptual point of
view. In recent years, there has been a lot of interest in steganographic techniques in connection with watermarking
for copyright protection of audio and video material'; in these cases the goal is to embed a marker or a digital
signature in proprietary material in order to track potential copyright infringements. Clearly, this requires that the
data hiding method be extremely resilient to common data processing techniques such as compression, filtering, or
cropping, which are viewed by the copyright owner as “attacks” on the watermark. Intuitively, it is easy to see
that the capacity of the steganographic channel and its robustness to attacks are inversely related to each other;
in watermarking applications this should not be a fundamental limitation since the amount of data to be hidden is
relatively modest, yet it is still an active area of research to find a universally robust watermarking technique.?

There is however another situation which can make good use of steganographic techniques, and that is the case
when different data sources share the same, fixed physical channel. Multiple access channels are extremely well
studied in the case of mobile communications, for instance, and we will see that some techniques that are commonly
employed in dealing with fading or nonflat multiple access links can be of help in designing a data hiding system.
However, the fundamental difference between such communication protocols and a data hiding scenario is that, in
the latter, one particular data source takes priority with respect to the others; furthermore, some of the receivers
might not have the ability to extract the hidden message, yet the composite data stream should be entirely equivalent
(in some perceptual way) to the prioritary data stream alone. Everyday examples of such a scenario are for instance
a color TV signal, which can be reproduced by older black and white sets; or teletext messages, inserted at the
blanking intervals between frames in a way that does not affect the standard TV decoding process. Both these
methods work by exploiting gaps in a decoding protocol; more sophisticated techniques can exploit the perceptual
gaps in the human visual or auditory system instead, much in the same fashion as standard compression algorithms
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do. The common strategy, in all cases, is to maximize the amount of information that can be hidden in a given signal
while preserving its perceptual properties. This maximization of throughput necessarily implies a very low resilience
to signal manipulation, which sets us apart from watermarking techniques; at any rate, the goal is not secrecy or
robustness towards attacks but the expansion (or better, the splitting) of the communication channel throughput in
a “backward dependent” way.

In this paper we will present a data hiding technique for digital PCM audio, based on the masking properties of
the human auditory system (HAS). The setting might be that of a compact disc (CD), for instance, to which we want
to tag additional data such as lyrics or pictures without altering either the format of the support (the “Red Book”
protocol) or its audio capacity (74 minutes approximately); the resulting CD will therefore be entirely compatible
with standard CD players, will play to the maximum allowable duration, and yet will allow more sophisticated
equipment to retrieve the hidden data. Some commercial examples which implement such an idea (albeit in minimal
form) to improve audio quality are already available®; we will show that, by casting the data hiding technique in a
rate/distortion framework, the optimal compromise between throughput and perceptual distortion can be achieved
for all types of audio signal and for any data hiding protocol.

2. PERCEPTUAL AUDIO CODING

State of the art audio coding algorithms such as MPEG or Dolby’s AC3 can provide acoustically transparent com-
pression ratios of the order of 4:1 to 6:1 by cleverly exploiting the masking phenomena inherent in human hearing.*°
Simply stated, masking occurs when weaker signal components are made inaudible by the presence of louder com-
ponents; such weaker components are said to lie below the masking curve of the signal. Compression algorithms
quantize the signal so that the bulk of the overall quantization noise is hidden below the masking curve, and is
therefore inaudible. In many audio steganography techniques, the hidden data source can be modeled by an equiva-
lent additive noise generator; by shaping the power spectrum of such noise so that it lies below the masking curve,
one could in theory achieve a perfectly transparent embedding. Perceptual hiding according to this general line has
been indeed proposed in the context of audio watermarking®; in this paper we are however concerned with a tagging
system for which maximum throughput and perfect extraction at the receiving end are the fundamental targets,
which requires a finer exploitation of the masking properties of a signal and a more sophisticated hiding strategy.

2.1. Psychoacoustic Modeling

In this section we will briefly review the fundamentals of psychoacoustic modeling from an operative, computational
point of view; this simplified approach neglects some finer aspects of the hearing mechanism such as temporal
masking but proves entirely adequate for the task at hand. From a physiological perspective, acoustic masking is a
consequence of nonlinear processing in the inner ear; frequency-selective areas in the cochlea, called critical bands,
exhibit a saturation characteristic whereby a loud sound component (the masker) renders inaudible all the weaker
components in the same critical band which lie below a certain power threshold. The threshold is in fact a function
of frequency and it decays rather rapidly in an interval centered around the masker; its magnitude depends on the
critical band number, on the power of the masker, and on the type of masker (whether an isolated spectral line or a
noise-like component).

A psychoacoustic model tries to algorithmically reproduce these hearing mechanisms in order to obtain an estimate
of the effectively inaudible portion of a given audio signal. Much study has been devoted to the characterization
of masking functions,® and different psychoacoustic models differ essentially in the parametrization of their shapes
and decay rates. In the following we will rely on a simple model in which masking functions are approximated by
piecewise linear functions in the log-power, bark frequency domain”; a unit of one bark corresponds to the width
of a critical band and, since the width of successive critical bands increases by approximately a third of an octave,
there is essentially a logarithmic mapping between bark scale and linear frequency scale. For complex tones the
masking phenomenon is distributed across the entire audible spectrum, since each spectral component originates a
local masking function; the sum of all masking thresholds for all components across the signal’s bandwidth yields
the overall masking curve.

An algorithmic process estimating the masking curve for a given signal can be illustrated with reference to the
MPEG standard psychoacoustic model 1, which will also be used in section 5. It comprises the following steps®:

o Computation of the power spectrum; this is performed by a short time Fourier transform analysis.



Figure 1. (a) Masking curve for one frame; (b) time varying masking threshold for a frequency around 1 KHz.

e Separation of tonal and non-tonal components; since the masking power of isolated spectral lines is less than
that of noise-like spectral components, the former are separated from the latter.

o Computation of the individual masking thresholds; this step is accomplished by convolving each spectral com-
ponent by the appropriate (tonal or non-tonal) masking function.

o Computation of the global masking curve; the masking curve is obtained as the sum of the individual masking
thresholds.

An additional step is required to map the masking curve thus obtained back to the linear frequency domain; the
final result will be denoted by the time-frequency function ©(¢, f). For a fixed time instant ¢, this function is one
realization of the masking curve; for a fixed frequency fo, it represents the evolution of the masking threshold over
time for the given frequency. Figures 1-(a) and (b) display typical instances of a masking curve and of a time-varying
masking threshold (at low frequency) respectively; here and in the following, the audio data are obtained from a
string quartet CD.® The time-frequency resolution of the psychoacoustic model depends on the underlying short
time spectral analysis used to compute the power spectrum, and it is a tradeoff between accuracy of the tonal and
non-tonal representation and responsiveness to fast signal transients. In MPEG layer II, for an input sampling rate
of 44.1 KHz, the psychoacoustic model produces a masking curve every 26 ms.; in the following, we will call such an
analysis interval as a frame.

2.2. Compression

As stated previously, the fundamental coding step of a perceptual audio coder is to quantize the signal separately
over different subbands so that the quantization noise level for each subband is less than the minimum value of
the masking curve over the subband. This minimum value is generally referred to as the masking threshold for the
subband. Without going into further details, the most important point is to remark that, due to this signal dependent
quantization, part of the total bit budget for the coder must be spent to inform the decoder of the different subband
levels.

3. PERCEPTUAL DATA HIDING

Consider an audio signal s(t), 0 < t < to bandlimited to fy Hz: we have seen that the masking curve computation
yields a function O(t, f), of which two typical time and frequency “slices” are displayed in Figure 1. This function
represents a two dimensional power constraint for the transmission power which, in principle, should lie below the
threshold. In order to fulfill this constraint, we choose to adopt a separable approach by discretizing both the
time and frequency axis; while this is admittedly not the most sophisticated way to achieve a time-frequency power
shaping, it is in line with the current techniques which implement the psychoacoustic analysis model and allows
for an easy integration of our transmission scheme in compression engines such as MPEG. In particular, spectral
power shaping in frequency for a given time interval is accomplished by multicarrier modulation, which implements
a discretized approximation of the reverse waterfilling algorithm.!® The key point is that, if the entire frequency
interval is split into M bands by a M-ary filterbank with perfect or almost perfect reconstruction capabilities, then
power shaping along the time axis can proceed independently for each filterbank subchannel.



3.1. Discretization

Assume the (positive) frequency axis [0, fn] is subdivided into M disjoint bands [fk, fr+1), fo = 0, far—1 = fn: at
any time instant ¢ we can obtain M corresponding masking thresholds values by selecting the minimum value of
O(t, f) in each subband. Also, the psychoacoustic model computes a full masking curve via short-time windowing
over frames K samples apart; for a sampling frequency of f; Hz, there are a total of N = f,to/K frames, with ©(¢, f)
constant for hK/fs <t < (h+1)K/fs, h=0,...,N — 1. The completely discretized set of masking thresholds can

therefore be denoted by the (discrete) function 6 (h) for k=1,... M —1and h=0,... ,N —1:

0r(h) = min OhK/fs, )} 1
()= min {O(K/fi. )} )
Using the same discretization grid, we would like to obtain a sequence of signal energy levels relative to the time-
frequency tiles over which the masking thresholds are computed; these can be determined as:

(h+1)K/fs

@wzﬁ 15(2) # g (1) 2dt 2)

K/ fs

where the Fourier transform of gi(¢) is the indicator function for the interval [fx, fr+1]; in practice, these energy levels
can be computed as the average energies over a time interval of one frame at the outputs of a M-band filterbank.

As for the data tagging scheme, we assume we have M independent “transmitters” which operate over the
[fx, fr+1) bands; we also assume the power of the transmitters can be arbitrarily varied across the K-point intervals
from a minimum level /; to a maximum level lg. In the rest of the analysis, the actual transmission method is
irrelevant as long as it can be modeled by a modulated, bandlimited additive noise source of equivalent power; we
will also assume that the number of bits which can be successfully transmitted to the decoder each frame is a given
function r(I) of the transmission level [ only.

3.2. Data Hiding and Side Information

At first, one might think to use a sequence of transmission power levels which lies just below the sequence of masking
thresholds for each subchannel; the receiver would re-determine the sequence of thresholds via a psychoacoustic model
identical to the transmitter and decode the data. Unfortunately, this approach is not viable for two reasons. First,
the masking curve computation for the audio signal and for the signal after the data has been embedded generally
yields different results; this means that the decoder cannot recover the correct sequence of transmission levels, and
therefore the data themselves. In addition, it might happen that the throughput requirements are stringent but
cannot be fulfilled by a sequence of power levels strictly below the thresholds; one might then decide to forgo the
absolute undetectability constraint and use a sequence of levels which sometimes exceeds the masking thresholds. For
both reasons, it is necessary to inform the receiver of the actual sequence of power levels, and this can only be done
via side information. The situation is akin to perceptual compression where, in order to exploit the psychoacoustic
gaps in the signal, side information about these gaps had to be supplied.

In our transmission scheme we inform the receiver only when the transmission power level changes in time; the
amount of side information is therefore proportional to the number of power level switches. Since side information
necessarily uses up part of the overall throughput, the objective is to devise a transmission sequence that maximizes
throughput with a low description cost. At the same time, fewer power switches mean that we will overshoot the
quickly varying masking threshold requirements more often. A tradeoff between throughput and perceptual distortion
is now apparent: the goal is to determine the optimal transmission sequence with respect to these two parameters.
The problem can be effectively cast in a rate/distortion framework, where the maximization of the “rate” (the
throughput) must be weighed against the corresponding increase in perceptual distortion. Efficient techniques for
unequal resource allocation have been developed in the context of quantization and coding!! and in the following we
will make full use of their fundamental concepts.

4. RATE/DISTORTION FORMULATION

For a single discretized subchannel the sequence of masking thresholds and signal levels for the time interval [0, N —1]
can be expressed in vector form as @ = {6(0),... ,6(N — 1)} and o = {¢(0),... ,6(N — 1)} (the channel subscript
is inessential and is dropped throughout this section). Call a power allocation a sequence of N transmission power



levels p = {p(0),... ,p(N — 1)}, I; < p(i) <lg and let P be the set of all possible allocations over [0, N — 1]; it is
clearly |P| = QN. Call D(0,0,p) the distortion we incur in if we use the sequence of power levels p to transmit
data over the subchannel; the corresponding net throughput will be denoted by R(p). The goal is to maximize
throughput while keeping the associated distortion below an acceptable minimum level Dy; this can be expressed as
a constrained maximization problem:

max{R(p)}

peEP
(3)
D(G,O',p) S DO

A direct maximization of (3) is obviously prohibitive computationally due to the cardinality of P for even moderate
values of N. The remainder of this section will show how to reformulate (3) as an equivalent unconstrained problem
and will discuss an efficient implementation of the resulting algorithm based on dynamic programming.

4.1. Efficient formulation

First of all, let us consider in detail the structure of rate and distortion. The measure we choose for the distortion
is the sum of the segmental perceptual noise to signal ratios (NSR), since the hidden data in each subband can be
represented as an equivalent narrowband noise source. A fundamental requirement is that the power of the noise be
less than the power of the signal; then, if the noise level is below the masking threshold, the perceptual distortion is
zero, otherwise its power is equivalent to the power of the transmitted data offset by the level of the threshold itself.
For a single frame we can therefore write:

+o0 if p(n) > o(n)
d(O(n), o(m),p(n) = § ° if p(n) < 8(n) < o(n) (4)
p(n) — 6(n)

if §(n) < p(n) < a(n)

and D(0,0,p) =3, d(0(n),c(n),p(n)). As for the rate, we can initially write

N-1

R(p) = Y [r(p(n)) — c(p(n), p(n — 1))] (5)

n=0

with p(—1) = Il; by convention and where ¢(p(n),p(n — 1)) is the cost (in bits) of encoding the side information
relative to a power level switch in transmission between one frame and the next; note that, according to our signaling
scheme, ¢(p,p) = 0 since only transitions between different levels need be notified. We will also assume that the cost
of side information is always less than or equal to the minimum achievable frame rate for all frames and all models,
so that all the terms in (5) are non negative. Assume now that the original (digital) audio channel allows for a
maximum capacity of rjs bits per frame*; our goal is to split this capacity between an audio data channel proper
and a tagged data channel so as to maximize the throughput of the latter. We can therefore introduce the following
auxiliary quantity

R(p) = Nry — R(p) (6)

which represents the portion of the total capacity not devoted to the hidden data. It is easy to see that using R, the
problem in (3) is equivalent to:
in{R
min{R(p)}
(7)
D(ea U,p) S -DO

The next step towards an efficient solution involves reformulating (7) as an equivalent unconstrained problem.
Note that each allocation p indexes a point on the {D, R} plane as in Figure 2-(a); if we restrict the search for the

*For instance: for a frame length of 36 samples at 16 bits per sample, s = 576 bits
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Figure 2. (a) (D, R) solution points and convex hull; (b) convexity of the hull.

solutions to (7) to the convex hull of the set of all (D, R) pairs, we can make use of Lagrange multipliers. Define a

functional J(A) = R(p) + A\D(6, 0, p); if, for a given A,
3k — : A
p" = argmin{J(A)} ®)
then p* (star superscripts denote optimality) indexes a point on the convex hull which solves the problem:

gleig{R(p)}

9)
D(0,0,p) < D(6,0,p*).

In other words, for each value of A we also have the solution to an equivalent constrained problem where the distortion
constraint is given by D(6@,o,p*). An iteration over A must be performed until this constraint coincides with Dy;
luckily the overall distortion is a monotonically nonincreasing function of A,'' so that the optimal value can be
found with a fast bisection search.'?

It may help the intuition to show why the set U of (D, R) pairs solving (8) indeed defines a convex line on the
“R/D” plane. Given any two solutions (D;, R;) and (D, R;), D; > Dj, the line in the R/D plane connecting them
has an (absolute) slope v = (R; — R;)/(D;— D;). Convexity requires that all solutions (D, R) such that D; < D < D;
lie below this line. Suppose this was not the case for a solution (D, R) € U; in terms of slopes connecting (D, R) to
(Di, R;) and to (Dj, R;) this implies

R, —R R-R;

D—Dj<7<Di—D' (10)

(see Figure 2-(b)). The (D, R) pair is by hypothesis a solution to (8) for a given ); however, if A < v, (10) implies
R; +AD; < R+ AD and we have a contradiction; otherwise, if A > v, we have again R; + AD; < R+ AD; therefore
(D,R) ¢ U. This holds for all elements of U and, for a dense solution set, it provides an intuitive meaning to the

value of A in (8) as the derivative of the convex hull at the relative solution point.

Even in its unconstrained form, the minimization in (8) would still require O(Q”) comparisons; the fundamental
simplification stems from rewriting (8) as the search for:

N-1
T = min{ " j(n;p(n), p(n — 1); )} (11)
n=0
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Figure 3. (a) Trellis structure; (b) metric computation and path population.

with

3(n;p(n),p(n = 1); A) = rar — r(p(n)) + ¢(p(n), p(n — 1)) + Ad(8(n), o (n), p(n)). (12)

Although all the terms in the summation are non negative, they are not independent because side information; the
minimization, therefore, cannot be carried out term by term as usual.'! However, suppose we know that the k-th
element of the optimal allocation p* is p*(k); since the dependence amongst terms extends only one step backward
we can write:

Jon—11(A) = {p(o),,r,r,l,l;%k_1)}{‘][0’k_1] (A) +e(p(k —1),p"(k))} + (13)

+rar —r(p*(k)) + Ad(0(k), o (k), p* (k) +

min J SN
{p(k+1),...,p(N_1)}{ k+1,8-1](A)}

(where subscripts for J()) indicate the signal range for the minimization). The three terms on the right hand side
of the equation are now independent; this means that, if p*(k) is an optimal allocation choice, the partial allocation
up to k is independent of further data and that, at each step k, the optimal allocation can be built incrementally
by formulating an optimality hypothesis over all transmission levels p(k). Equation (13) is a particular case of the
optimality principle in dynamic programming'® and suggests an efficient way to implement the allocation process as
a trellis search.

4.2. Trellis Algorithm

The minimization in (13) can be deployed on a @-state, (N + 1)-stage trellis as in Figure 3; a state will be denoted
as s, where the superscript identifies the time index from 0 to IV — 1 and the subscript is a transmission power level
index from 1 to (); the same notation is used for the path metrics jj.

A) Initialization: Define the initial state s7! and set j; ' = 0.
Then, for 0 <n < N —1:

B) Metric computation: for 1 < k,h < @ compute the cumulative Lagrangian cost 77" + j(n; I, lk; A); if this
is less than +oo, connect s}~ ' to s? and associate the cost to the connecting path.

C) Pruning: for 1 < k < @, determine amongst all the paths converging to s} the one with the minimum
cumulative Lagrangian cost and prune all the others; call this minimum cost 7} and associate it to the state.
In the end, select the state si, ' with the minimum cumulative cost and backtrack to s;* along the surviving
paths in the trellis: the sequence of traversed states provides the optimal allocation p* for the chosen A. From
Nt = J*(\) = R(p*) + AD(8,0,p*) the total throughput R*(\) = Nry — R and distortion D*()\) can be
obtained.



4.3. Iteration over \

In some cases, especially when the distortion constraint is specified to within a tolerance interval, an educated guess
for A can avoid the need for an explicit search. In most cases, however, the value for A must be determined iteratively
until the constraint Dy is met as closely as possible. The search algorithm exploits the convexity of the solution set
and proceeds as follows'2: first determine Apin and Apax 50 that D*(Amax) < Do < D*(Amin) (see below for details)
and choose a starting value for A between Anin and Apax. Then, run the metric computation and pruning routines
(Steps B and C above)f; if D*(A) > Dy then replace Anax by A, else replace Amin by A; determine the new value as

(14)

and repeat until the distortion constraint is met.

4.4. Initial values for the iteration

Given the monotonic relationship between A and D*()), an obvious choice for the initial minimum value is Ayin = 0,
for which the maximum allowable real throughput is achieved at the expense of a very large distortion. A good
estimate for Apax can be inferred from the following argument. Assume we have obtained (for some large value of
A) the solution pair (0, Rmax), at zero distortion. As we now sweep A from 400 to 0, consider the first value A; for
which D*(\1) > 0; a nonzero distortion means that the power of the data is larger than the masking threshold in at
least one frame, and therefore

D*(h) 2 _min { min {d(6(n),0(n),1)}} = Do (15)

Diyin can be easily computed from a fast pass over 6. Because of (8), for all (D, R) pairs it is R+ M\ D > R*(\1) +
A1D*(A1) and, in particular, for (0, Ryax) we can write

)\1 < Rmax_R (/\1) < N’I‘M

- D*()\l) - Dmin (16)

We can therefore set Amax = N7ar/Diin -

4.5. Multiple subchannels

The previous analysis easily carries over to the case of data hiding over several subchannels simultaneously. Optimality
of the global rate/distortion tradeoff means that all subchannels must operate at the same value for A since the overall
rate and distortion are the (unweighed) sums of the rates and of the perceptual distortions for all channels. For 4
different subchannels, by building

60 = {6k,(0),... .60k, (N —1),0r,00),...,0k,(N—1),...,0;(0),...,0, (N —1)} (17)

(and similarly for o) the trellis algorithm can be used to obtained an Ni-element allocation vector p from which the
single subchannel allocations can be extracted in orderly fashion. A constant A across subchannels implies an optimal
distribution of the total amount of hidden data across channels, so that little or no data is tagged to frequency regions
with poor masking capabilities such as in the high end of the audio spectrum.

5. A PRACTICAL IMPLEMENTATION

In the following section we will describe a practical implementation of the data hiding scheme for stereo, 44.1 KHz
16-bit PCM audio.

TObviously, at each iteration only the new cumulative costs need be recomputed if both rate and distortion values for all transitions
have been stored rather than just the cumulative metric. This increases the storage requirements by a factor of two but can significantly
speed up the iteration process.
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Figure 4. Signaling protocol for the allocation sequence p* = {1(2),1(2),1(2),1(2),1(0),1(0),1(0),1(5),1(5)}.

5.1. Signaling scheme

Discretization of the frequency axis is achieved by means of a 32-channel, uniform cosine-modulated filterbank as
described in the MPEG Layer II specifications®; the width of a single subchannel is 690 Hz. The psychoacoustic
model produces a masking curve every 1152 raw audio samples, which is then discretized to produce a masking
threshold value for each subband; for a single subchannel, therefore, one threshold level is active over a frame of 36
subband samples.

Data tagging is achieved by replacing the least significant bits of the subband samples with data bits. Assuming
the data has been scrambled, this is equivalent to an additive narrowband noise source with an approximate power
of 6 dB per tagged bit; due to roundoff error in the analysis/synthesis filterbank computations, however, the least
significant bit (LSB) of the subband samples is essentially random and therefore tagging can proceed safely only
from the second LSB onwards. The transmission power (in linear units) corresponding to k tagged bits per sample
is then:

0 k=0
“m={4ﬂlﬁk>m (18)

a signaling power of zero is needed when the finite distortion constraints cannot be met. Since there are 36 16-bit
subband samples in a frame, rpr = 576 and r(l) = 36k; the minimum number of bits which can be tagged to a frame
is therefore 36.

Side information is strictly related to the signaling protocol described below; its cost for a transmission power
switch from & to h bits/sample is

0 bits ifk=h
c(l(k),I(h)) =< 36 bits ifk#h andk =0 (19)
36h bits ifk#h and k=0

With these models, the optimal signaling sequence p* is determined by the trellis algorithm, and tagging proceeds
by passing the signal through the filterbank, replacing the LSB’s of the subband samples according to p*, and recon-
structing the PCM audio signal with the complementary synthesis filterbank. At the decoder, after synchronization,
an identical analysis filterbank recovers the subband samples and the data can be retrieved following the structure
conveyed by the side information.

5.2. Signaling protocol

Synchronization between transmitter and receiver is established at the audio PCM sample level by inserting a sync
sequence in the LSBs of the audio PCM samples; this has no noticeable perceptual effect on the audio material. The
hidden data transmission protocol is displayed in Figure 4 for an allocation vector

p* = {l(2)al(2)7l(2)7l(2)7l(0)7l(O)al(O)al(5)7l(5)}'

First of all, the allocation vector is subdivided in blocks for which the number of bits per subband sample is constant;
in this example there are three such blocks. Each tagged data block begins with the side information describing the
number of bits/samples and the length (in frames) of the next block; for blocks which follow a zero bit allocation
(and for the initial block) a separate one-frame side information header is necessary in which data is always tagged
at one bit/sample; in all other blocks side information is encoded at the current bit/sample allocation level.
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Figure 5. Throughput/distortion curve.

In the side information slot, 4 bits completely specify the power level and 8 bits are used for the block length; due
to the catastrophic propagation of possible errors in the decoding of the allocation structure, a 3:1 repetition code is
employed for a total of 36 bits. With this bit distribution the maximum block length is 6.6 seconds, which has proven
largely sufficient in all practical cases; in the unlikely event of a longer block, the price to pay is an additional 36-bit
side information slot after the 256th frame, which introduces a negligible suboptimality in the global allocation.

5.3. Results

In Figure 5 the net throughput is plotted against the perceptual NSR for a 1 minute audio excerpt.® At zero
distortion (noise always below the masking threshold) the net rate is about 21 kbit/sec; at twice this rate the average
NSR grows to -25 dB, the limit after which, in most cases, distortion becomes disruptive. For the intermediate
case of a 30 kbit/sec throughput and -35 dB NSR, Figure 6 displays how the R/D optimal algorithm allocates the
transmission power across bands and in time for the first four subbands; the dotted line represents the signal power
while the thin continuous line represents the masking threshold; the power of the data is plotted with a thick line.

6. CONCLUSIONS

We have presented a data hiding algorithm to embed digital data into PCM audio signals. The data hiding strategy
determines the optimal tradeoff between the capacity of the steganographic channel and the perceptual distortion
added to the original signal for all possible rates by means of a Lagrangian minimization; for stereo CD audio,
capacities on the order of 30 kbit/sec can easily be achieved at no perceptual cost. The rate/distortion framework is
completely general and can be adapted to many different signaling schemes; furthermore, since the structure of the
tagged data is conveyed to the receiver by means of side information, the system is independent of the particular
psychoacoustic model employed in the analysis. Audio samples, together with the decoding software, can be retrieved
at http://lcavwww.epfl.ch/"prandoni/optimal/doa.html.
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