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Abstract
Voiced musical sounds have non-zero energy in sidebands of the frequency partials. Our work is based on the as-

sumption, often experimentally verified, that the energy distribution of the sidebands is shaped as powers of the in-
verse of the distance from the closest partial. The power spectrum of these pseudo-periodic processes is modeled by
means of a superposition of modulated 1/f components, i.e., by a pseudo-periodic 1/f –like process. Due to the funda-
mental selfsimilar character of the wavelet transform, 1/f processes can be fruitfully analyzed and synthesized by
means of wavelets, obtaining a set of very loosely correlated coefficients at each scale level that can be well approxi-
mated by white noise in the synthesis process.

 Our computational scheme is based on an orthogonal P-band filter bank and a dyadic wavelet transform per
channel. The P channels are tuned to the left and right sidebands of the harmonics so that sidebands are mutually
independent. The structure computes the expansion coefficients of a new orthogonal and complete set of Harmonic
Wavelets. The main point of our scheme is that we need only one parameter in order to model the stochastic fluctua-
tion of sounds from a pure periodic behavior.
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1 Introduction
The purpose of this work is to introduce a technique

for the analysis and synthesis of pseudo-periodic signals
based on a special kind of wavelet packets, i.e., the Har-
monic Wavelet Transform. We start from the wavelet-
based model for 1/f processes introduced by Wornell [4]
and we extend this model to the pseudo-periodic 1/f-like
signals.

1/f processes can be employed for representing cha-
otic systems that are strongly influenced by their past
behavior [1-3]. Voiced sounds in speech and music are
pseudo-periodic signals and exhibit a long-term correla-
tion or more precisely an approximate 1/f behavior in the
neighborhood of each harmonic partial.

This is due to the chaotic but correlated micro-
fluctuations from the periodic behavior of the signal
itself. These fluctuations play a relevant role in the emu-
lation of naturalness of voiced sounds.

Wornell in Theorem 3 in [4] states that a process
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mean coefficients, is nearly 1/f, i.e., its time-averaged
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We will extend this result to pseudo-periodic signals,
introducing the Harmonic Wavelets, which consists of a
continuos-time infinite-channel filter bank and a discrete
wavelet transformation of each channel.

The most important result of this synthesis technique
is that it allows one to control a highly complex stochas-
tic process by means of relatively few parameters.

In section 2 we define the pseudo-periodic 1/f noise
by means of a Harmonic Modulation and Demodulation
scheme. In section 3 we illustrate the theoretical results
on which our new method of synthesis is based. In sec-
tion 4 we briefly review the Discrete Harmonic Wavelets
and their properties. Section 5 deals with some applica-
tions to music synthesis.

2 Pseudoperiodic 1/f –like noise
We now provide a formal definition of pseudoperi-

odic 1/f-like noise based on a general modulation and
demodulation scheme.

The frequency spectra of pseudoperiodic signals are
characterized by harmonically spaced peak at frequencies

PT
k

k
πω 2= , where TP is the average period of the signal.

In order to separate the contribution of each of the har-
monic bands one can devise a set of ideal narrow-band
filters of bandwidth 

PT
πω =∆  each fitting a single side-

band of the harmonics. The magnitude frequency re-
sponse of these filters is given by
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is the characteristic function of the interval [A,B[. The
outputs of these filters may be baseband shifted, accord-
ing to a suitable demodulation scheme. This results in the
demodulation scheme reported in Fig. 1.
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Fig. 1: Baseband shift of harmonic sidebands: (b) side-
bands of the 2nd harmonic; (a) demodulation of the left
sidebands; (c) demodulation of the right sidebands.

Demodulation of a signal x(t) in 2L  may be de-
scribed by the scalar products
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where the kernels of the set of linear operators K q ,

q=0,1,... ,  have  the form
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where β βq q= − −1  are arbitrary phase factors.

The operators (2) have support in
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and perform a harmonic demodulation to baseband
] [

PP TT
ππ ,− of the signal subband Wq. The operator K q  is

invertible, with inverse

K t K t K tq q q
− = =1( , ) ( , ) ( , )τ τ τ† ,

where the symbol † denotes the adjoint. Thus K q  is

unitary and the operators K q
−1 perform a harmonic

modulation from baseband to Vq where Vq is the 2L
subspace of signals bandlimited to Wq. 

We can thus model acoustic pseudoperiodic signals
with fundamental frequency πω 2/00 =f  by means of a

superposition of harmonic modulated bandlimited 1/f
processes. Each process has bandwidth equal to half the
harmonic spacing 0ω and contributes to a single side

band of each of the harmonics.
Denoting by k the harmonics index and by L and R

the left and right sideband, respectively, the average
spectrum of a pseudoperiodic 1/f -like process has the
following form for 0≥ω :
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where 2
,Rkσ  and 2

,Lkσ  are the amplitudes and γ k R,  and

γ k L,  the decay parameters.

Defining an ideal bandpass filter
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where ε is arbitrarily small, we arrive at the following
Definition 1. A stochastic process x(t) is said to be a 1/f -
like pseudoperiodic noise if there exists a TP>0 such that
when x(t) is operated by qK in (2), yields a collection of

processes
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such that, when filtered through )()( ωεH , with
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0 = , they become wide-sense stationary and ban-

dlimited with power spectrum
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for some γ q andσq .

The operations involved in (5) are equivalent to fil-
tering the single sidebands of each of the harmonics,
separately for the positive and negative frequencies, and
properly baseband shifting the result.

Comparing (6) with the model spectrum in (3), we
can make the following associations:

Lqq ,12 γγ =− ,  Rqq ,2 γγ = ,  Lqq ,12 σσ =− ,  Rqq ,2 σσ = .

Since the resulting processes )(twq  in Definition 1

are bandlimited to [ ]2/ , 2/ 00 ωω− , they can be sampled

with sampling rate 
PT
1

2
0 =π

ω
.

For our purposes we introduce then the set of func-
tions { }

Z∈= kqkq tg
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which is easily shown to form an orthonormal basis. It is
easy to see that the scalar product (5) followed by sam-
pling are equivalent up to a multiplicative con-

stant PT to the projection of x(t) over the basis.

3 Synthesis of pseudoperiodic 1/f-like
noise by means of Harmonic Wavelet
Transform

In the Introduction we recalled Wornell's results
about the synthesis of 1/f processes by means of Wavelet
basis. We will provide now an equivalent result for the
pseudoperiodic case. We need to prove a Lemma first.

In order to do this we define a new continuous- time
Multiwavelet basis which we will call Harmonic Wavelet
Transform (HWT):
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where the )(, rmnψ  form an ordinary Discrete Wavelet

basis and the )(, tg rq  are defined according to (4).

The Fourier transforms of Harmonic Wavelets are:
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The action of filtering is essentially that of selecting a
single sideband of the harmonics. Then we can prove the
following:
Lemma 2

A signal x(t) such that
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WSCS processes of the kind of:
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the )(mn
qν  are mutually uncorrelated coefficients and

q
qq

γ
σβ 22= , is cyclostationary with period 2NTP. The

same result holds for the scale residue of the scale-
truncated expansion.

For the synthesis we derived the following
Proposition 3

The random-process
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where the { }
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 ,...;1,0, )(  form an orthonormal set of

functions, as defined in (7) and the )(mqν are, up to a

multiplicative constant PT , the samples of approxi-

mately 1/f  processes synthesized by means of a DWT
filter bank, yields an average power spectrum of the
form:
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In the ideal case
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For the proofs of Lemma 2 and Proposition 3 see [8].

4 Discrete Harmonic Wavelets
The discrete counterpart of (7) is given by the basis

associated with an ideal P band filter bank. We want to
obtain an efficient scheme for the analysis and synthesis
of pseudoperiodic 1/f noise. Thus we consider an ap-
proximation of the ideal filter bank granting perfect re-
construction. In particular, we consider the class of Type
IV cosine modulated bases:
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where the lowpass prototype impulse response )(lW  of

length M satisfies some technical conditions [8]. It is
easy to prove that the set is orthogonal and complete.

In order to synthesize the samples of 1/f processes
)(kwq we adopt the scheme devised by Wornell [4],

which consists of an ordinary discrete wavelet synthesis
structure, with white noise inputs. The overall structure
is realized by introducing the Discrete Harmonic Wave-
lets [9]. These constitute a special type of multiwavelets,
generalizing the Pitch-Synchronous Wavelet Transform
class [6,7], defined by
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where )(, rmnψ  are discrete-time ordinary wavelets [5].

The Fourier transforms of the basis elements (15) are
shown in Fig. 2.

In the analysis structure of the Discrete Harmonic
Wavelet Transform, the signal is sent to a P channel
filter bank and each output is Wavelet transformed (WT
block). Signal reconstruction is achieved by separately
inverse Wavelet transforming the Harmonic Wavelet
coefficients and passing these sequences through the
inverse P channel filter bank. This technique generalizes
the one presented in [10] since independent control to
each subband is allowed.
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Fig. 2 : Magnitude Fourier transform of Harmonic
Wavelets (P=5).

5 Applications to Music Synthesis
Our synthesis technique requires the estimation of

three parameters per each harmonic partial k: σk , γ k,R ,
γ k,L . The parameters σ  may be estimated from the fre-
quency spectrum by means of a peak-picking algorithm.
The estimation of the parameters γ k is may be based on
the HWT analysis. It is necessary to perform a linear
regression according to the following law:

const))((log ,,2 += nxVar qqmn γ                   (16)

with  2
1+= qk .

Our experimental results show that HWT analysis
supports the hypothesis that the shape of the side-bands
of voiced sounds have an approximate 1/f behavior. In
fact by linear regression we obtain correlation coeffi-
cients in the range 0.8 - 0.9 for the most relevant har-
monics. Estimation improves if the bootstrap algorithm is
employed to simulate a larger data set. We have then
considered different samples of real instruments. The
reproduction of the energy of the harmonic bands and of
the sidebands in the synthetic sounds is well performed
by our method, as shown in Figs. 3 and Fig. 4.

6 Conclusions
In this paper we introduced a new method for sound

synthesis that allows us to control and reproduce the
micro fluctuations present in real life voiced sounds. This

method is a sort of additive synthesis where one adds
modulated 1/f signals instead of pure sinusoidal func-
tions. We defined a new class of stochastic processes, i.e.,
pseudoperiodic 1/f-like noise. We introduced a special
type of multiwavelet transform, i.e., the Harmonic
Wavelet Transform. We devised an efficient analy-
sis/synthesis scheme able to perform parameter estima-
tion and generate pseudoperiodic 1/f -like noise.
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Fig. 3 Frequency spectrum of real-life oboe
 (287.5 Hz)
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Fig. 4 Frequency spectrum of synthesized oboe.
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