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Abstract — It is known that in the absence of dis-
tortion, the minimum average sampling density for a
multiband signal is given by its spectral occupancy [1].
Furthermore, there exist nonuniform sampling pat-
terns of the same average sampling density such that
reconstruction is feasible even if the actual spectral
support of the multiband signal is unknown [2]. This
is called spectrum-blind nonuniform sampling. How-
ever, if the samples are distorted, an increased sam-
pling density may lead to superior reconstruction.

Suppose that a fidelity criterion is imposed on the recon-
struction. To satisfy this, it is necessary to sample at an in-
creased density. In this paper, we consider additive noise dis-
tortion of the samples, and the fidelity criterion is the prob-
ability that the spectral support is correctly reconstructed.
In [3], we consider samples distorted by quantization, with a
mean-square reconstruction error fidelity criterion.

I. NONUNIFORM SAMPLING

Consider a complex-valued length-N sequence z € CV
with discrete Fourier transform (DFT) X € CV, where
X(m) = 1/VN Z —o z(n)e™? N2Tm et z be a multi-
band sequence of spectral occupancy ¢/N, i.e. let X have (at
most) g non-zero components in arbitrary locations, indexed
by K = {k1,...,kq}, where k; € {0,... N ~ 1}. The spectral
occupancy for this vector is Q = g/N. Define the vector z.
containing only p of the N components of z, at locations in-
dexed by ¢ = {c1,...,cp}. These are the nonuniform samples,
with average sampling density p = p/N. In matrix notation,
we can write z. = A, xS. Here, S contains the g non-zero
components of X, and A, k is the submatrix of the inverse
DFT matrix that is obtained by only retaining the rows with
indices in ¢ and the columns with indices in K. We consider
the case of distorted samples y. = z. + z = A, kS + 2, where
2z ~ N:(0,0°I) is (complex) white Gaussian noise.

II. NECESSARY SAMPLING DENSITY

Let the location of the g nonzero components of X be
distributed uniformly over all possibilities, and let their
(complex) values be distributed as circularly normal, S ~
Nc(O,agI ). We define the signal-to-noise ratio (SNR) 8 =
o%/o*. It can be shown [4] that for 2 = 0, there exist sam-
pling patterns with sampling density p = Q + 1/N allowmg
w.p.1, perfect reconstruction of z from y.

We derive a necessary condition for the optimal sampling
density for 2z # 0. It follows from considering mutual informa-
tions. We start by noting that by the data processing lemma,
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I(ze; ve) > I((S, K); ye) = I(K; ye) + I(S; ye|K), which yields
max I(z; yc) > X, {IK;y) + I(S;w K)}, (1)

where first, the max is taken on both sides over all sets
{Ac,x} of matrices satisfying (AC kAfk) = Q (which pre-
serves E|z.(i)|* = Qo); then, on the LHS the max is taken
over all distributions of z(i) for which E‘[:c:£(1,)|2 Qo? as
for the true z.(¢). The term on the left in Eqn. (1) is sim-
ply the capacity of a (complex) additive white Gaussian noise
(AWGN) channel with input power constraint Q% and addi-
tive noise variance o2, thus max I(z¢; yc) = plog, (1 + Q8).

Next, consider I(K;y.) in Eqn. (1). This is the mutual
information across the digital channel from K to y.. A lower
bound on the mutual information follows from Fano’s inequal-
ity, I(K; ye) > H(K) — Hy(P.) — P.log, (') - 1).

Last, consider I(S;y.|K) in Eqn. (1). It is the mutual in-
formation across the channel between S and y.. This is also a
Gaussian channel, but its input is not iid. The achieved mutu-
al information is found by averaging over all k as I(S; y¢|K) =
Ek log, det (I, + BAH A. k). For each k, the maximum over
A subject to the aforementioned constraint is achieved (by
the geometric-arithmetic mean inequality) by A x that has or-
thogonal columns, yielding I(S;y|K) = glog, (1 + Bp). This
proves the following:

Theorem (Necessary Condition). The optimal sam-
pling density p = p/N has to satisfy

plogy (1+69) 2 + [logs(}) — Ha(P.) = P log, (')~ 1)]
+ Qlog, (1 + Bp)
Letting N — oo in the theorem, we obtain
plog, (1 +8Q) > Qlog, (1+ Bp) + (1 — P)H(2),.  (2)

which is sharp in the limit 8 — oo, because it reduces to
p 2 Q. For finite SNR B, p > Q, with the excess density
given by (2).
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