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Abstract

The Bradford chromatic adaptation transform, empirically
derived by Lam, models illumination change. Specifically, it
provides a means of mapping XYZs under a reference light
source to XYZs for a target light source such that the
corresponding XYZs produce the same perceived color.

One implication of the Bradford chromatic adaptation
transform is that color correction for illumination takes
place not in cone space but rather in a ‘narrowed’ cone
space. The Bradford sensors have their sensitivity more
narrowly concentrated than the cones. However, Bradford
sensors are not optimally narrow. Indeed, recent work has
shown that it is possible to sharpen sensors to a much
greater extent than Bradford.

The focus of this paper is comparing the perceptual
error between actual appearance and predicted appearance
of a color under different illuminants, since it is perceptual
error that the Bradford transform minimizes. Lam’s original
experiments are revisited and perceptual performance of the
Bradford transform and linearized Bradford transform is
compared with that of a new adaptation transform that is
based on sharp sensors. Perceptual errors in CIELAB �E,
�ECIE94, and �ECMC(1:1) are calculated for several
corresponding color data sets and analyzed for their
statistical significance. The results are found to be similar
for the two transforms, with Bradford performing slightly
better depending on the data set and color difference metric
used. The sharp transform performs equally well as the
linearized Bradford transform: there is no statistically
significant difference in performance for most data sets.

1. Lam’s Experiment

In his experiment to derive a chromatic adaptation
transform, Lam [1] used 58 dyed wool samples. His main
objectives when choosing the colors were that the samples
represent a reasonable gamut of chromaticities
corresponding to ordinary collections of object colors (see
Figure 1), and that the samples have various degrees of
color constancy with regard to change of illuminant from
D65 to A.

To evaluate the samples, Lam used a memory matching
experiment where observers are asked to describe the color
appearance of stimuli in relation with a memorized color
ordering system. Lam trained the observers on the Munsell
system. Each observer was asked to describe the appearance
of the samples in Munsell hue, chroma and value terms. The
observers were fully adapted to the illuminant before they
began the ordering. He used five observers with each
observer repeating the experiment twice, resulting in ten
color descriptions for each surface and for each illuminant,
respectively.

Figure 1: Distribution of Lam’s 58 samples in CIELAB space,
measured under D65

Lam converted the average Munsell coordinates of each
sample under illuminant D65 and A to CIE 1931 Y, x and y
values so that any color difference formula can be applied to
the data. He calculated tristimulus values using the 1931
CIE equivalents of Munsell samples under illuminant C [2].
To calculate Munsell equivalent values under D65, he used
the Helson et al. [3] chromatic adaptation transform to
correct for the illuminant change from C to D65. This
correction assumes that the Munsell chips are virtually color
constant when changing illuminants from C to D65. It
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should be noted that he used the same illuminant to
transform the Munsell coordinates of samples estimated
under both D65 and A, justified as he trained the observers
on the Munsell coordinate set using D65.

Lam observed systematic discrepancies between the
measured sample values under D65 and those obtained from
visual inspection under D65. Newhall et al. [4] found
similar effects in their comparisons of successive (i.e.
memory) matching with simultaneous color matching
experiments. To calculate the correct corresponding colors
under illuminant D65, he therefore added the difference
between the measured sample value and the observed
sample value under D65 to each observed sample value
using additive correction in CIELAB space.

Lam was now in a position to derive a chromatic
adaptation transform, i.e. to find a mapping that related his
corresponding color data. In his derivation he adopted the
following set of constraints: (1) the transform should
maintain achromatic constancy for all neutral samples, (2) it
should work with different adapting illuminants, and (3) it
should be reversible (i.e. when a particular color is
transformed from A to D65, and back to A again, the
tristimulus values before transformation and after transfor-
mation back to A should be the same). The Bradford
chromatic adaptation transform, called KING1 in his thesis,
is based on a modified Nayatani transformation [5] and is as
follows:

Step 1: Transformation from ZYX ,,  to BGR ,, .
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Step 2: Transformation from BGR ,,  to ''' ,, BGR .
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Quantities www BGR ,,  and ''' ,, www BGR  are computed
from the tristimulus values of the reference and test
illuminants, respectively, through equation (1).

Step 3: Transformation from ''' ,, BGR  to ''' ,, ZYX .
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2. Linearized Bradford Transform

In some color management applications, the non-linear
correction in the blue of the Bradford transform is
considered negligible and is not encoded [6]. The linear
Bradford transform is simplified to:
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Quantities www BGR ,,  and ''' ,, www BGR  are computed
from the tristimulus values of the reference and test
illuminants by multiplying the corresponding XYZ vectors
by MBFD.

3. Spectral Sharpening

One implication of the Bradford chromatic adaptation
transform is that color correction for illumination takes
place not in cone space but rather in a ‘narrowed’ cone
space. The Bradford sensors (the linear combination of
XYZs defined in the Bradford transform) have their
sensitivity more narrowly concentrated than the cones (see
Figure 2). Additionally, the long and medium Bradford
sensitivities are more de-correlated compared with the
cones. However, Bradford sensors are not optimally narrow.
Recent work has shown that it is possible to sharpen sensors
to a much greater extent than Bradford [7]. These ‘sharp’
sensors are the most appropriate basis for modeling and/or
computing adaptation of physical quantities (raw XYZs)
across illuminants, i.e. for solving the non-perceptual
adaptation problems when treating XYZs as the important
units.

Though perceptual data was not used to derive
spectrally sharpened sensors, spectral sharpening does
appear to be psychophysically relevant. Indeed, sharp
sensors have been discovered in many different
psychophysical studies. Foster [8] observed that when field
spectral sensitivities of the red and green response of the
human eye are determined in the presence of a small
background field, the resulting curves are more narrow and
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Figure 2: Normalized white-point preserving sharp transform (solid) from A to D65, derived from Lam’s experimental data, compared
with the Bradford transform (dash), and normalized L,M,S cone responses (dot).

de-correlated than the regular cone responses. These
sharpened curves tend to peak at wavelengths of 530 nm
and 605 nm, respectively.

Poirson and Wandell [9] studied the color
discrimination ability of the visual system when targets are
only briefly presented in a complex display. The spectral
sensitivities derived from their experimental data peak
relatively sharply around 530 and 610 nm.

Thornton [10] postulated that the visual response
consists of sharp sensors with peak wavelength around 448,
537, and 612 nm by comparing the intersections of the
spectral power distributions of matching light sources. He
found that light sources designed with these peak
wavelengths minimize metamerism.

Brill et al. [11] discussed prime-color wavelengths of
450, 540, and 605 nm. They proved that monitor primaries
based on these wavelengths induce the largest gamut size,
and that these monitors are visually very efficient. The color
matching functions derived from these primaries, when
linearly related to the CIE 1931 2º color matching curves,
are sharp and de-correlated.

5. The Sharp Adaptation Transform

The sharp adaptation transform used for this experiment is
derived from the spectral sharpening algorithms described
by Finlayson et al. [7]. The performance of diagonal-matrix
transformations that are used in many color constancy
algorithms can be improved if the two data sets are first
transformed by a sharpening transform T.

Using Lam’s experiment, the prediction of the
corresponding colors under D65 should approximately
equal

DDDDPTST � (5)

where S is a 58 x 3 matrix of corresponding color
XYZs under illuminant D65, P is a 58 x 3 matrix of the
measured XYZs under illuminant A and DDDD is the diagonal
matrix formed from the ratios of the two sharpened white-
point vectors RGBD65 and RGBA, derived by multiplying
vectors XYZ D65 and XYZA with T.

The matrix T is derived from the matrix M that best
maps P to S minimizing least-squares error [12].

SPPPM TT 1)( �

� (6)

However, while M calculated using equation (6) results
in the smallest mapping error, it will not fulfill the
requirement that particular colors are mapped without error,
i.e. preserving achromaticity for neutral colors. Therefore,
M was derived using a white point preserving least-squares
regression algorithm [13]. The intent is to map the values in
P to corresponding values in S so that the RMS error is
minimized subject to the constraint that, as an artifact of the
minimization, the achromatic scale is correctly mapped. For
completeness, the mathematical steps are summarized below
to allow the interested reader to implement the method.
However, it is possible just to assume that such a transform
exists and skip over the next two equations.

In order to preserve white:

)(ZNDM �� (7)

where D is the diagonal matrix formed from the ratios
of the two white point vectors XYZD65 and XYZA
respectively. Z is a 3 x 2 matrix composed of any two



vectors orthogonal to the XYZA vector. N is obtained by
substituting Z, N and D in equation (6) and solving for N.
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The sharpening transform T can be derived through
eigenvector decomposition of the general transform M.

1][ �� UUDM iagonal (9)

where T is equal to U.

The predicted corresponding colors under illuminant
D65 of Lam’s 58 samples, using the sharp transform, are
calculated as follows:

1][ �

� TPTS DDDD (10)

6. Comparison of the Bradford and Sharp
Transforms

Applying the resulting sharp transform, derived via data-
based sharpening of the corresponding colors of the 58 Lam
samples under illuminants A and D65 minimizes the RMS
error between corresponding XYZs. It also yields sensors
that are visibly sharper than those implied by the Bradford
transform (see Figure 2). However, what we are most
interested in is to compare the perceptual error between
actual appearance and predicted appearance of a color under
different illuminants using both the Bradford and the sharp
transform.

Several corresponding color data sets were used to
compare the performance of the Bradford, linearized
Bradford and the sharp transform. Together they form a set
accumulated by Luo and Hunt for the purpose of deriving
and evaluating color appearance models and chromatic

adaptation transforms [14]. Table 1 lists the characteristics
of the data sets used in this study.

The actual and predicted XYZ values were converted to
CIELAB space. Three perceptual error prediction methods,
�ELab, �ECIE94, and �ECMC(1:1) were applied. One-tail
student-t tests [20] for matched pairs were used to compare
the Bradford, the linearized Bradford and the sharp data sets
to find if the variations in errors are statistically significant.
The null hypothesis was that the mean of the difference
between the Bradford or linearized Bradford and sharp
prediction error is equal to zero. The alternative hypotheses
were that either one or the other prediction is better. For
comparison between the Bradford and the sharp transforms,
the RMS and mean color differences, and the t-test results
for 95 and 99 percent confidence levels are listed in Tables
2, 3, and 4. Tables 5, 6, and 7 list the results for the
linearized Bradford and the sharp transforms.

For Lam’s corresponding color data, the Bradford
transform does perform better than the sharp transform
when the color error metric applied is �E (Table 2).
However, there is no statistically significant difference at
the 95 or 99 percent confidence level in using either
Bradford or sharp to predict corresponding colors under
illuminant D65 using either �ECIE94 or �ECMC(1:1) (Tables 3
and 4). That is, the sharp transform works equally well as
the Bradford transform.

For the other 15 data sets, Bradford outperforms sharp
for 3 or 5 sets, depending on the color difference metric
applied. Sharp performs better for one of the sets. For the
other data sets, there is no statistical difference between the
two transforms.

Comparing the sharp and the linearized Bradford
transform (Tables 5, 6, and 7), the sharp transform performs
either equally well, or better for 2 or 3 out of the 16 data
sets, depending on the color difference metric used.

Table 1: Characteristics of the corresponding color data sets used in this study [1, 3, 15, 16, 17, 18, 19].
Approx. Illuminant

Data Set
No. of

Samples Test Ref.
Sample

Size
Medium Experimental Method

Lam 58 D65 A L Refl. Memory
Helson 59 D65 A S Refl. Memory
CSAJ 87 D65 A S Refl. Haploscopic
Lutchi 43 D65 A S Refl. Magnitude
Lutchi D50 44 D65 D50 S Refl. Magnitude
Lutchi WF 41 D65 WF S Refl. Magnitude
Kuo&Luo 40 D65 A L Refl. Magnitude
Kuo&Luo TL84 41 D65 TL84 S Refl. Magnitude
Braun&Fairchild 1 17 D65 D93 S Monitor&Refl. Matching
Braun&Fairchild 2 16 D65 D93 S Monitor&Refl. Matching
Braun&Fairchild 3 17 D65 D30 S Monitor&Refl. Matching
Braun&Fairchild 4 16 D65 D30 S Monitor&Refl. Matching
Breneman 1 12 D65 A S Trans. Magnitude
Breneman 8 12 D65 A S Trans. Magnitude
Breneman 4 12 D65 A S Trans. Magnitude
Breneman 6 11 D55 A S Trans. Magnitude



Table 2: RMS and mean ����ELab and student t-test results for BFD and sharp transform.
RMS ����ELab Mean ����ELab 95% confidence 99% confidence

����ELab BFD Sharp BFD Sharp Better
than BFD

Same as
BFD

Worse
than BFD

Better
than BFD

Same as
BFD

Worse
than BFD

Lam 4.7 5.1 4.2 4.5 X X
Helson 6.2 6.2 5.4 5.3 X X
CSAJ 5.3 5.6 4.9 5.1 X X
Lutchi 6.7 7.6 5.9 6.8 X X
Lutchi D50 6.9 6.8 6.3 6.3 X X
Lutchi WF 8.9 8.7 7.8 7.8 X X
Kuo&Luo 7.0 7.7 6.1 6.9 X X
Kuo&Luo TL84 4.7 4.7 4.2 4.3 X X
Braun&Fairchild 1 4.0 4.0 3.8 3.8 X X
Braun&Fairchild 2 6.8 6.6 6.1 5.9 X X
Braun&Fairchild 3 7.6 7.3 7.2 7.1 X X
Braun&Fairchild 4 6.1 6.0 5.9 5.9 X X
Breneman 1 9.0 10.8 8.4 10.5 X X
Breneman 8 14.0 14.0 12.9 12.1 X X
Breneman 4 14.6 14.9 12.9 12.3 X X
Breneman 6 7.9 8.3 7.2 7.9 X X

Table 3: RMS and mean ����ECIE94 and student t-test results for BFD and sharp transform.
RMS ����ECIE94 Mean ����ECIE94 95% Confidence 99% Confidence

����ECIE94 BFD Sharp BFD Sharp Better
than BFD

Same as
BFD

Worse
than BFD

Better
than BFD

Same as
BFD

Worse
than BFD

Lam 3.3 3.4 2.9 2.9 X X
Helson 4.0 4.0 3.5 3.4 X X
CSAJ 3.9 4.1 3.6 3.7 X X
Lutchi 3.9 4.5 3.5 4.0 X X
Lutchi D50 4.0 4.0 3.6 3.6 X X
Lutchi WF 4.2 4.2 3.9 4.0 X X
Kuo&Luo 4.0 4.2 3.7 4.0 X X
Kuo&Luo TL84 2.8 2.9 2.6 2.7 X X
Braun&Fairchild 1 2.9 3.0 2.7 2.8 X X
Braun&Fairchild 2 5.3 5.2 4.6 4.5 X X
Braun&Fairchild 3 4.7 4.5 4.5 4.3 X X
Braun&Fairchild 4 4.3 4.1 4.1 4.0 X X
Breneman 1 5.2 5.9 4.8 5.6 X X
Breneman 8 7.4 7.9 6.6 6.8 X X
Breneman 4 8.4 8.9 7.1 7.2 X X
Breneman 6 4.3 4.9 4.0 4.7 X X

Table 4: RMS and mean ����ECMC and student t-test results for BFD and sharp transform.
RMS ����ECMC Mean ����ECMC 95% Confidence 99% Confidence

����ECMC(1:1) BFD Sharp BFD Sharp Better
than BFD

Same as
BFD

Worse
than BFD

Better
than BFD

Same as
BFD

Worse
than BFD

Lam 4.1 4.2 3.5 3.5 X X
Helson 4.7 4.7 4.0 4.0 X X
CSAJ 4.3 4.5 4.0 4.1 X X
Lutchi 4.5 5.2 4.0 4.6 X X
Lutchi D50 4.5 4.4 4.1 4.1 X X
Lutchi WF 5.3 5.2 4.8 4.8 X X
Kuo&Luo 4.6 4.9 4.2 4.6 X X
Kuo&Luo TL84 3.4 3.5 3.1 3.1 X X
Braun&Fairchild 1 3.6 3.7 3.3 3.4 X X
Braun&Fairchild 2 6.5 6.4 5.7 5.5 X X
Braun&Fairchild 3 5.9 5.7 5.6 5.4 X X
Braun&Fairchild 4 5.5 5.4 5.2 5.0 X X
Breneman 1 6.4 7.1 5.7 6.7 X X
Breneman 8 8.9 9.3 7.9 7.9 X X
Breneman 4 10.2 10.6 8.6 8.5 X X
Breneman 6 5.8 6.4 5.1 5.9 X X



Table 5: RMS and mean ����ELab and student t-test results for linearized BFD and sharp transform.
RMS ����ELab Mean ����ELab 95% Confidence 99% Confidence

����ELab BFDlin Sharp BFDlin Sharp Better than
BFDlin

Same as
BFDlin

Worse than
BFDlin

Better than
BFDlin

Same as
BFDlin

Worse than
BFDlin

Lam 5.3 5.1 4.4 4.5 X X
Helson 6.7 6.2 5.6 5.3 X X
CSAJ 5.9 5.6 5.4 5.1 X X
Lutchi 7.6 7.6 6.9 6.8 X X
Lutchi D50 6.9 6.8 6.3 6.3 X X
Lutchi WF 9.9 8.7 8.9 7.8 X X
Kuo&Luo 7.0 7.7 6.4 6.9 X X
Kuo&Luo TL84 5.0 4.7 4.6 4.3 X X
Braun&Fairchild 1 3.9 4.0 3.6 3.8 X X
Braun&Fairchild 2 6.7 6.6 6.0 5.9 X X
Braun&Fairchild 3 7.4 7.3 7.1 7.1 X X
Braun&Fairchild 4 5.8 6.0 5.7 5.9 X X
Breneman 1 9.9 10.8 9.1 10.5 X X
Breneman 8 16.1 14.0 14.0 12.1 X X
Breneman 4 17.1 14.9 14.7 12.3 X X
Breneman 6 8.2 8.3 7.7 7.9 X X

Table 6: RMS and mean ����ECIE94 and student t-test results for linearized BFD and sharp transform.
RMS ����ECIE94 Mean ����ECIE94 95% Confidence 99% Confidence

����ECIE94 BFDlin Sharp BFDlin Sharp Better than
BFDlin

Same as
BFDlin

Worse than
BFDlin

Better than
BFDlin

Same as
BFDlin

Worse than
BFDlin

Lam 3.5 3.4 3.0 2.9 X X
Helson 4.2 4.0 3.5 3.4 X X
CSAJ 4.2 4.1 3.8 3.7 X X
Lutchi 4.0 4.5 3.7 4.0 X X
Lutchi D50 3.9 4.0 3.5 3.6 X X
Lutchi WF 4.8 4.2 4.4 4.0 X X
Kuo&Luo 4.1 4.2 3.9 4.0 X X
Kuo&Luo TL84 3.0 2.9 2.8 2.7 X X
Braun&Fairchild 1 2.9 3.0 2.7 2.8 X X
Braun&Fairchild 2 5.2 5.2 4.5 4.5 X X
Braun&Fairchild 3 4.8 4.5 4.5 4.3 X X
Braun&Fairchild 4 4.2 4.1 4.0 4.0 X X
Breneman 1 5.6 5.9 5.0 5.6 X X
Breneman 8 8.4 7.9 7.2 6.8 X X
Breneman 4 9.6 8.9 7.9 7.2 X X
Breneman 6 4.4 4.9 4.2 4.7 X X

Table 7: RMS and mean ����ECMC and student t-test results for linearized BFD and sharp transform.
RMS ����ECMC Mean ����ECMC 95% Confidence 99% Confidence

����ECMC(1:1) BFDlin Sharp BFDlin Sharp Better than
BFDlin

Same as
BFDlin

Worse than
BFDlin

Better than
BFDlin

Same as
BFDlin

Worse than
BFDlin

Lam 4.3 4.2 3.6 3.5 X X
Helson 4.9 4.7 4.1 4.0 X X
CSAJ 4.7 4.5 4.3 4.1 X X
Lutchi 4.5 5.2 4.2 4.6 X X
Lutchi D50 4.4 4.4 4.0 4.1 X X
Lutchi WF 6.0 5.2 5.5 4.8 X X
Kuo&Luo 4.7 4.9 4.4 4.6 X X
Kuo&Luo TL84 3.6 3.5 3.3 3.1 X X
Braun&Fairchild 1 3.5 3.7 3.2 3.4 X X
Braun&Fairchild 2 6.4 6.4 5.5 5.5 X X
Braun&Fairchild 3 6.0 5.7 5.8 5.4 X X
Braun&Fairchild 4 5.3 5.4 5.0 5.0 X X
Breneman 1 6.7 7.1 5.9 6.7 X X
Breneman 8 10.0 9.3 8.5 7.9 X X
Breneman 4 11.4 10.6 9.5 8.5 X X
Breneman 6 5.7 6.4 5.2 5.9 X X



7. Conclusions

These results are very interesting. A sharp transform,
derived through white point preserving data based
sharpening of an arbitrary set of corresponding colors,
performs almost as well as the current most popular
chromatic adaptation transform, and slightly better than its
simplified version that is used in many color management
applications.

More broadly, we believe, the experimental results
reported here are significant for a number of reasons. First,
the chromatic adaptation transform in CIECAM97 is based
on the Bradford transform. Second, the Bradford transform
is being considered for standardization (CIECAT). Perhaps
one can do better than Bradford? Third, sharp sensors have
been discovered in many different psychophysical studies
so it seems entirely plausible that sharp sensors are used in
color vision. Yet, to the authors’ knowledge, the appearance
of the Bradford sensors is unique to Lam’s original study.
Sharp sensors also have the advantage that they are close to
sRGB [21] color matching curves. So basing adaptation on
sharp sensors meshes well with standard color correction
methods used in digital color cameras.

In writing this article, we are not in anyway trying to
invalidate the Bradford transform. Rather, we want to draw
attention to the fact that the optimality of the Bradford color
space for chromatic adaptation has never been
experimentally proven. While it is clear that the Bradford
sensors perform better than cone space, they perform no
better than sharp sensors. This said, it is our opinion that the
standardization of the Bradford transform is premature.
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