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Abstract

We study the problem of Multiple Description (MD) coding of stationary
Gaussian sources with memory. First, we compute an approrimate rate dis-
tortion region for these sources, which we prove to be asymptotically tight at
high rates: this region generalizes the standard MD rate distortion region for
memoryless sources. Then we develop an algorithm for the design of optimal
biorthogonal filter banks for MD coding. Finally, we present some experimen-
tal results, where we measure the deviation from optimality of our proposed
system. For almost uncorrelated sources the gap between the performance of
our proposed system and the ideal bounds is quite high, on the other hand for
highly correlated sources this gap is reduced, due to the ability of our system to
take advantage of the memory in the source. In this case, in realistic scenarios
where finite complezity/ delay is an issue, the subband coding approach is com-
petitive with other approach like decorrelating transform followed by MD Scalar
Quantizers.

1 Introduction

Recently, the problem of transmitting data over unreliable networks in which, e.g.
due to real-time delay constraints, it is not possible to retransmit lost data, has
received considerable attention. Multiple Description (MD) coding offers a potentially
attractive framework in which to develop coding algorithms for such scenarios: a
MD coder encodes an information source into multiple bit streams (descriptions)
having a property known as mutual refinability: each individual description provides
an approximation to the original message, and multiple descriptions refine each other,
to produce a better approximation than that attainable by any single one alone. The
simplest formulation of the problem of coding into MDs involves only two descriptions,
at rates R; = R», that are sent over two erasure channels. If both descriptions are
received then the decoder can reconstruct the source at some small distortion value
Dy (the central distortion), but if either one is lost, the decoder can still reconstruct
the source at some higher side distortion Dy = Dy > D.
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The basic idea of MD coding is that of introducing dependencies among the two
descriptions so that, in case of an erasure, the decoder still has access to some infor-
mation about the lost piece of data. On the other hand, this redundant information
reduces the coding efficiency. The resulting excess rate p = Ry + Ry — R(Dy) (R(-) is
the rate/distortion function for the source) is called redundancy, and represents the
price that needs to be paid in order to attain graceful degradation in the presence of
losses. One formulation of the problem of MD coding consists then of minimizing the
distortion in the presence of loss of data, given some allowed redundancy p.

Early papers on MD coding are information theoretic in nature, and deal with the
problem of finding sets of achievable values for the quintuple (Ry, Ry, Dy, D1, D3) [3,
7]. More recent papers however consider the problem of designing practical MD
systems. MD quantizers are designed in [8, 10]. A suitable blockwise transform is
applied to an input vector before coding to obtain the MD property in [4, 6]: the
input vector is usually a jointly Gaussian vector, the basic idea being to decorrelate
the vector components and then to introduce again correlation between coefficients
but in a known and controlled manner so that erased coefficients can be statistically
estimated from the received ones.

In this paper we investigate the more general case of arbitrary stationary Gaussian
processes. In this case the MD rate/distortion region was not known: here we present
a region which asymptotically approximates the real one arbitrarily well at high rates.
We then develop an algorithm for designing two-channel biorthogonal filter banks for
optimal MD coding of Gaussian sources. The approach used is similar to the one in
the blockwise transform context: we construct a first filter bank to decorrelate the two
input sequences, and then we use a second filter bank to efficiently recorrelate them,
with the frequency response of this second set of filters depending on the allowed
redundancy. Finally, the case of a first order Gauss-Markov process is examined in
detail: the performance of this system is compared against the generalized bound.
The results show that for memoryless sources, there is a large gap between the per-
formance of the the proposed filter banks and that of the MD rate region; however,
this gap is reduced as the memory in the source increases.

2 The Multiple Description Rate Region

For a memoryless Gaussian source with variance 0%, Ozarow [7] has found an explicit
characterization of the set of achievable distortions (dy, di, d2) for a given pair of rates
Ry, Ry. The inverse of the functions presented in [7], are the following [5, 7]

1 o?
> = Z
R, > 2log<d1> (1)
1 o2
> Zlog (T 2
Ry > 20g<d2> (2)
1 o2 1 o2
> log (2] +Z10g (2
R +Ry, > 20g<d1>+20g(d2>+5 (3)



0 is defined by:

§ = %log <1,1p2) ) dO S dgax
0, dy > dp=

where:

e _ didy
0 - d1+d2—(d1d2/0'2)

and

p=—"YTwZs 7= (1—¢o)[(€1 — €)(€a — €0) + €o€r162 — €2] .

O=(1-€e)1-e) &=4d/c%(i=0,1,2)

Now we are interested in finding the rate region for a stationary Gaussian sequence
z[n]. As a first step we can take N successive components of the sequence and apply
a KLT to them to get uncorrelated (an so independent) components. Each of this
component has a different variance (A; ¢ = 1..N). We aim at finding the MD rate
region for this N-sequence; so the question is how we should allot the rates R, R
to minimize the total distortions dy, d;, dy. If the slopes of the three equations (1, 2,
3) are independent of the variances (};), then the optimum allocation of the rates to
the various component results in equal distortions for each random variable and the
rate-region for the N-sequence is:
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where we have used the Kuhn-Tucker conditions when necessary.

Now passing to the limit of infinite NV and using the fact that the N x /N correlation
matrix is a symmetric Toeplitz matrix [2], we can find the MD rate region for the
complete sequence:
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where S(w) is the power spectral density (p.s.d.) of the input sequence.
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Unfortunately, the hypothesis that the slope of the rate-distortion curves does not
depend on the variances does not hold for the equation (3). So the proposed bounds
are not tight. On the other hand it can be shown that in the limit of high resolution
coding (so in the limit of small distortions) ¢ and dy,q, do not depend on the variances
anymore [5], so in this case the hypothesis that the slopes are independent of the
variances holds also for equation (3) and consequently the proposed bounds are tight
in the limit. In the rest of the paper we will consider as bounds for a Gaussian source
the one presented in (7, 8, 9), while keeping in mind that the smaller the distortions
dy, d1, ds the closer our bounds are to the real ones.

3 Optimal Filter Bank for MDC *

Consider the classic two-channel filter banks scheme shown in Fig. 1. Here the input
z[n] is assumed to be a stationary Gaussian process with known statistics, and is
fed through an analysis filter bank. The two output sequences are then separately
quantized and sent over two different erasure channels.

Figure 1: Two channel filter banks

We suppose that the channels are independent, that they have the same erasure
probability, and that R; = R, (which is equivalent to requiring to transmit equal
power over the two channels). For convenience we will formulate our problem in the
polyphase domain [12]. In this case, the input-output relation can be expressed in
matrix notation introducing the analysis polyphase matrix H(w):

( Yi(w) > _ < Hii(w) Hiz(w) ) ( X1(w) > (10)
Ya(w) Hy(w)  Haz(w) X3 (w)

R, (w) is the 2 x 2 polyphase power spectral density (p.s.d.) matrix of the input
process, so R, (w) is the auto or cross p.s.d. between the i-th and j-th polyphase
components. Likewise R,(w) is the p.s.d. matrix of the outputs, but here R, (w) is
the p.s.d. between the i-th and j-th channel signals (as in Fig 2). The synthesis part
of the system can be analyzed in a similar fashion.

Without loss of generality we decompose the matrix H(w) into the product of two

matrices M (w) and T (w):}
H(w) =T(w)M(w). (11)

*During the writeup of this work we became aware of the still unpublished work of Yang and
Ramchandram [13], where the authors approach the same problem of optimal subband decomposition
for MD coding, but in a slightly different way.

It can be shown that this factorization does not reduce the generality of the solution. This is
mainly because M (w) is unitary and it does not depend on the redundancy.
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Figure 2: The polyphase matrix decomposition into M (w) and T'(w).

Here, M(w) is the matrix that has to decorrelate the two input sequences and its
frequency response depends only on the statistics of the input signal. For a stationary
input process, the decorrelating matrix can be found analytically and has the following
shape [9]:

elw/? 1

M(w) = — . (12)
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M (w) is clearly unitary and represents the solution we will use in the rest of the
paper. T'(w) is the “recorrelation” matrix, whose frequency response depends on the
redundancy and on the p.s.d. of the decorrelated sequences. This is the matrix that,
given an allowed amount of redundancy, has to be optimized.

We call R; the p.s.d. matrix of the input process after decorrelation, o%(w) the
p.s.d. for the sequence Z;[n], and o2(w) the p.s.d. for the sequence #3[n| (clearly from
Fig. 2, the cross p.s.d.’s are equal to zero).

Given a target central distortion Dy, we define the redundancy to be the difference
between the minimum bit rate R(D,) necessary to code the two output sequences
y1[n], yo[n], and the bit rate R(Dj) necessary to code the two decorrelated sequences
(Z1[n], Z2[n]). Under a fine quantization assumption, then the redundancy is given by
the following formula [2]:

™
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Notice that p does not depend on Dj.

Since the two channels have the same erasure probability, the expected distortion
due to an erasure is the average of the distortions D; and D,, divided by 2 since each
distortion is related only to a downsampled version of the input sequence :

D:i(Dl—i-Dg), (14)
where D; = D5, and:
D = 5 [(Hu)Hil) + Hy)Hn) - (Ron(e) - 220w 15)



A derivation of this formula must be omitted due to lack of space.

In our formulation we have only considered the distortion due to erasure and
have neglected the one due to quantization, since it is usually much smaller. Thus
our optimization problem consist in constructing the matrix 7'(w) to minimize the
distortion D for a given redundancy p.

To develop our formulation we refer to the results published in [4], where Goyal and
Kovacevi¢ show that the optimal transform, in case of transmission of two Gaussian
decorrelated variables over two independent channels with the same erasure proba-
bility and at the same rate (R; = Ry), is given by:

1
“ 2a
T = , (16)

where the value of a depends on the redundancy p:
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o? and o3 are the variances of the two Gaussian components, with the usual assump-
tion that o2 > ¢2. Finally the side distortion is given by:
L, 1 2 _ 2

D = 50'1 - 1. 22p(22,0 _ m) (01 - 02)' (18)

It is interesting to notice that if the source has a circularly symmetric probability
density, i.e., 07 = 09, then the distortion is independent of p. We would like to
generalize these results to our case, where the two variances change with the frequency.
Without loss of generality let us suppose that 0% (w) > 02(w), Yw.

As a first approximation we divide the frequency axis into N equal sub-intervals,
and suppose that the two p.s.d.’s are constant over each of these intervals. Now we
have only N possible values for the p.s.d. 0?(w) and 62(w): (0%;,03,), = 1..N. With
this approximation we can apply the results of [4] on each interval, and claim that
the optimal transform for the generic i-th interval, given a redundancy p; for that
interval, is the one given by (16), where the value of a is given by (17); the resulting
side distortion is:

L, 1 ) ,
271 0% — 03)- 19
2 1z 4. 22pi(22pi — /2% — 1)( 1z 2z) ( )

However we want to minimize the global side distortion D = % > D;, given a global
redundancy budget p = % > pi- So the problem now is to find an optimal strategy
for the allocation of the redundancy over the N intervals to accomplish this. This is a
typical problem of constrained minimization. We define a new cost function L which

combines the distortion and the redundancy through a positive Lagrange multiplier
Al L=D+ Ap.

D; =




Finding a minimum of L (which now depends on A too) amounts to finding minima
for each L; = D; + Ap; (because the costs are additive). If we suppose that the
redundancy budget is sufficiently large and that o2 is never equal to o2 then it is
possible to give a closed form expression for the allocation problem. In fact, writing
the distortion as a function of the redundancy D;(p;), and taking derivatives, we get:

oD; In2(o};, —03) _ In2
Opi ~ 4-220(\2%i—1) 4

The constant-slope solution forces the redundancies to be of the following form:

(O-%i - 031)2_4“ = =), (20)

1
pi = a+ 1 log(ofi — ogi). (21)

Using the redundancy constraint p = % > pi, we can find o and finally

1 1
pi=p+y log(o7; — 03;) — IN zi:log(ai' — 03;)- (22)

The approximation in (20) holds if p; is sufficiently large. Its value depends of course
on the total redundancy budget p, but also on the difference 0%, —c2,. If this difference
is zero the corresponding side distortion (19) will not change with the redundancy
and in this case it is better not to allocate any redundancy in this interval (p; = 0). So
when o2, = 02, the hypothesis of high redundancy budget is not enough to guarantee
that the closed form (22) holds.

Now that we know the optimal strategy of redundancy allocation, we can let the
number N of intervals go to infinity (which means reducing the size of the intervals
to zero) and find, in this way, the optimal spectral distribution of the redundancy for
the two real p.s.d.’s (02(w), o3(w)):

™
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Once we know the spectral distribution of the redundancy, we can automatically find
the shape of the side distortion for the “recorrelating” transform 7T'(w) and of a(w):

™

1
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Note that when the approximation (20) cannot be applied, the only way to find the
spectral distribution of the redundancy and of the other variables is via numerical
optimization.



To conclude this section, we want to point out that a generalization of these
results to the case of three or more channels has not been found yet. In fact while
it is possible to analytically construct the decorrelating matrix M (w) for the case of
more than two channels [9], an analytical solution for the matrix 7'(w) for the general
case is not known.

4 Application to Gauss-Markov Sources

In this section we show our optimization results for a first order Gauss-Markov or
Gauss autoregressive source z[n] = az[n — 1] + w[n]. The p.s.d. of this process is:

1
Se(w) = ————. 24
) = e (24
After downsampling, the two polyphase subsequences zi[n], z2[n] are still Gauss-
Markov processes, but with the regression coefficient o replaced by o? and the i.i.d.
original Gaussian source w[n] replaced by a new i.i.d. Gaussian source with zero mean
and variance 1 + o2. Hence the p.s.d. for these two processes are given by

1+a?
Rp11(w) = Rayza(w) = m; (25)
whereas the cross p.s.d. Ryi2(w) is given by
a1 + el=7¥)

Rpa(w) = WRIH(W)’ (26)

with Ry91(w) = R 5(w). The p.s.d. matrix after decorrelation is

lel(u}) (]. + 20‘(%(()%2)) 0
Ry (w) = (27)
0 Ry (w) (1 - 2ogetef))

Observe that the two p.s.d.’s after decorrelation are equal only at 7 (and of course at
—m). The next step entails the construction of the matrix T'(w). As previously stated,
at the points closest to the frequency values where 0?(w) = 02(w) it is not possible to
use the closed-form (22) even in the high redundancy hypothesis. So, for the Gauss-
Markov source, a(w) (and consequently T'(w)) can only be found numerically. The
final polyphase matrix H(w) is given by the product of the matrix T'(w) with the
matrix M (w).

To analyze the performance of this filter bank, we compare it against the ideal
bounds found in Section 2. In this experiment we have fixed the target central
distortion Dy and the total amount of bits (R; + Ry) that we are allowed to transmit
over the two channels, given these constraints we have computed the side distortion
for the two systems. We have varied the value of the memory coefficient o of the Gauss
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Figure 3: Solid: MDC using filterbanks, dashed-star: ideal bound.

Markov process to see the effect of the memory of the source on the performance of
the two systems. The results are shown in figure 3. We can see that for small values
of a (so for an almost memoryless source) the performance of the proposed system is
quite poor. (For e = 0 the gap between the two cases is of 6.02dB while in this case
an entropy constrained MD Scalar Quantizer performs only 3.06dB worse than the
ideal bounds[11]) On the other hand for highly correlated sources the gap between the
optimal filter banks and the MD bounds is reduced in this experiment to 3.10dB. So
in this case the filter bank system could effectively compete with Multiple Description
Transform codes based on decorrelating the input sequence with a unitary transform
and then in applying a different MD Scalar Quantizer on each decorrelated component
[1].

An important question raised by our work relates to trade offs between coding
performance and delay/complexity of the encoders. The filters obtained with our
proposed design procedure are in general of infinite length, but in practical settings,
we may be forced to consider approximate FIR solutions. Analogously in the case of
MD transform codes, the size of the unitary transform (Karhunen-Loeve transform
for the Gaussian case) cannot be arbitrarily large. Then the issue is to understand
which of the two systems performs better for a fixed filter/block length. This is the
focus of our current work on this topic.

5 Conclusions

In this work we addressed the problem of MD coding in a subband coding framework.
We have generalized previous results, which apply only to finite length input vectors,
to the more general case of input sequences and subband decompositions. We have
shown how to design filter banks that can minimize the side distortion given a cer-
tain amount of redundancy. Two important contributions of this paper are: (a) the
characterization of a region which asymptotically is the MD rate/distortion region
for general stationary Gaussian sources, and (b) the identification of conditions (i.e.,



MD coding of highly correlated sources) under which subspace-based methods are
potentially competitive with quantizer-based methods. This is important because, in
the context of scalar quantization, MD transform codes attain optimal performance

[1].

References

[1]

[2]
3]

[4]

[5]

[6]

[7]

(8]

J.-C. Batllo and V.A. Vaishampayan. “Asymptotic Performance of Multiple Descrip-
tion Transform Codes,” IEEE Trans. Inform. Theory, 43(2):703-707, 1997.

T.Berger, Rate Distortion Theory, Prentice-Hall, Englewood Cliffs, NJ, 1971.

A.A. El Gamal and T.M. Cover, “Achievable Rates for Multiple Descriptions,” IEEE
Trans. Inform. Theory, IT-28(6):851-857, 1982.

V. Goyal and J.Kovacevi¢, “Optimal Multiple Description Transform Coding of Gaus-
sian Vectors”, In Proc. Data Compression Conf. (DCC), Snowbird, UT, 1998.

T. Linder, R. Zamir, K. Zeger “The Multiple Description Rate Region for High Res-
olution Source Coding”, In Proc. Data Compression Conf. (DCC), Snowbird, UT,
1998.

M.T. Orchard, Y. Wang, V.Vaishampayan, and A.R.Reibman, “Redundancy Rate-
Distortion Analysis of Multiple Description Coding using Pairwise Correlating Trans-
forms,” In Proc. IEEE Int. Conf. Image Proc. (ICIP), Santa Barbara, CA, 1997.

L.Ozarow, “On a Source Coding Problem with Two Channels and Three Receivers”.
Bell Syst. Tech. J., 59(10):1909-1921, 1980.

S.D. Servetto, V.A. Vaishampayan, and N.J.A. Sloane. “Multiple Description Lattice
Vector Quantization”. In Proc. Data Compression Conf. (DCC), Snowbird, UT, 1998.

M.K.Tsatsanis and G.B. Giannakis, “Principal Component Filter Banks for Optimal
Multiresolution Analysis,” IEEE Trans. Sig. Proc., 43(8):1766-1777, 1995.

V.A. Vaishampayan, “Design of Multiple Description Scalar Quantizers,” IEEE Trans.
Inform. Theory, 39(3):821-834, 1993.

V.A. Vaishampayan and J. Domaszewicz. “Design of Entropy-Constrained Multiple
Description Scalar Quantizers,” IEEE Trans. Inform. Theory, 40(1):245-250,1994.

M.Vetterli and J. Kovacevié, Wawvelets and Subband Coding, Prentice Hall, 1995.

X. Yang and K.Ramchandran “Optimal Subband Filter Banks for Multiple Descrip-
tion Coding”, IEEE Trans. Inform. Theory, to appear.

10



