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Abstract

The spectrum of any voiced sound in speech and music
shows harmonic peaks whose sidebands behave
approximately as hyperbolic segments. These
sidebands contain the frequency representation of the
stochastic micro-fluctuations of the signal with respect
to a pure periodic behavior. This approximately
periodic behavior induces us to think about voiced
sounds as pseudo-periodic signals.

Thanks to the particular time-frequency tiling, the
Harmonic-Band Wavelet Transform provides an ideal
tool to deal with such a spectral behavior from both
the analysis and synthesis points of view. Their
peculiarity is to reproduce the ordinary wavelet
spectral behavior in a periodic way. These periodic
spectra can be tuned and reshaped according to the
pitch and spectrum of any pseudo-periodic signal. Qur
technique, i.e., it can reconstruct the stochastic
component of pseudo-periodic signals, so important in
order to perceive sounds as natural ones.

The model, combined with a deterministic synthesis of
the harmonic part of the sound, also based on wavelets,
forms a powerful synthesis method that preserves the
naturalness of sounds with respect to sinusoidal
models.

1 Introduction

In a previous paper [4] we introduced the 1/f-like pseudo-
periodic model in order to provide a synthesis model for
pseudo-periodic voiced sounds in music. In this paper we
present some extensions of that model where we obtain a
more accurate spectral representation and we take into
account some time dependent components which can be
better reproduced by means of shot noise models [7]. In
the 1/f pseudo-periodic model we used white noise as
synthesis coefficients and we approximated each
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hyperbolic-like segment by means of only one parameter.
This parameter controlled the spectral shape of the whole
sideband. We now refine our technique by modeling
separately each wavelet subband of each harmonic
sideband. This provides a more detailed approximation of
the spectrum. A further significant improvement is
achieved considering the Ioose but not null correlation of
the Harmonic-Band Wavelets analysis coefficients.
Speech and music voiced sounds expansion coefficients
are well approximated by an AR analysis and resynthesis
model, employing white noise as excitation and
reproducing the above-mentioned loose correlation. With
these coefficients, the Harmonic Wavelets synthesis
scheme provides a good model for reconstructing the
sidebands of the harmonics by means of a still very
restricted set of parameters.

The model can be improved by employing the Arbitrary
Bandwidth Wavelet Transforms [10]. These transforms
release our technique from the strict frequency domain
subdivision by negative power of two of ordinary
wavelets. Applying the arbitrary bandwidth wavelet to
pseudo-periodic signals, we can realize higher resolution
spectral modeling of each sideband.

Furthermore we have to deal with time-localized noisy
events, such as blowing impulses in wind instruments.
Shot-like noises [7] are time localized energy peaks. By a
well-suited threshold-based combined pitch and peak
detection is then possible to record the impulses
occurrence times and to resynthesize them by means of a
limited collection of properly overlapped elementary
waveforms samples.

The paper is organized in the following way: in section 2
and 3 we provide a short review of the Harmonic-Band
Wavelet transform (HWBT) and of the 1/f pseudo-
periodic model, respectively. In section 4 we detail the
analysis and synthesis techniques. In Section 5 we
illustrate some experimental results. In section 6 we draw
our conclusions.



2 Harmonic-Band Wavelets: a review

Harmonic-Band Wavelets are a generalization of the
Multiplexed Wavelets MWT) [3]. The MWT, the HBWT
allows one to control independently the intensity and
shape of each harmonic side-band of the spectrum, which
are consolidated in single basis elements in the MWT. The
computation of the transform consists in band-pass
filtering and critically downsampling each sideband. The
resulting signals are then separately wavelet transformed
(see Fig. 1).

In [5] we introduced the set of functions
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which is easily shown to form an orthonormal and
complete basis.

Similar sets are available for the discrete case. We chose
the Type IV cosine modulated bases:
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where the lowpass prototype impulse response W (Il) of

Iength M satisfies some technical conditions [6].
The {g (l)} are the bandpass filters, which
q.r 9=0.1,.. P:keZ

separate the harmonic band of a pseudo-periodic signal of
period P.
The HBWT are then defined in the following way:
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where y, ,,(r) are discrete-time ordinary wavelets [2].

3 1/f-like Pseudo-Periodic Model: a
review

In this section we briefly review the results related to
the 1/f -like pseudo-periodic model. The goal is to
reproduce the casual but time-correlated micro-

fluctuations with respect to a strictly periodic behavior of
voiced signals in speech and music. These fluctuations
play a relevant role in the emulation of naturalness of
these sounds. We proved that it is possible to extend
Wornell's results in [1] to the 1/f —like pseudo-periodic
case. In Theorem 3 Wornell proves that a process

x() = Z Za (my, . (1)

n=—oom=—00

where v, (#) form a orthonormal wavelet basis and the
a,(m) are collections of white mnoise zero-mean
coefficients with properly scaled energies, is nearly 1/f,
i.e., its time-averaged power spectrum
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Similarly we showed that a process
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where the & ,(#) form a HBWT base and the a7 (m)

are collections of white noise zero-mean coefficients with
properly scaled energies, has time-averaged power
spectrum
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Transforms of the HBWT and the respective Harmonic
Scale Functions. This spectrum is approximately 1/f near
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for some 0< g7, < o7, <oo (see Fig. 2b).
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Fig. 1 HBWT analysis and synthesis scheme.

4 The analysis and synthesis model

In the analysis structure of the Discrete Harmonic-Band
Wavelet Transform, the signal is sent to a P channel filter
bank, where P is the discrete pitch of the analyzed signal.
Each output corresponds to a single sideband of a
harmonic. The resulting signals are critically
downsampled and then Wavelet transformed. Signal
reconstruction is achieved by separately inverse Wavelet
transforming the Harmonic-Band Wavelet coefficients and
passing these sequences through the inverse P channel
filter bank.

The synthesis coefficients are produced according to the
analysis results. The first step consists in measuring and
recording the spectral energies of each wavelet filter
output. Afterwards we perform an LPC analysis of each
subband HBWT coefficients. We obtain a set of AR filters
able to take into account the analysis coefficients loose
correlation.

In the synthesis process we model the expansion
coefficients by filtering white noise by means of these AR
filters. Then the energy of each subband of each harmonic
sideband is rescaled according to the spectral energies
extracted from the analysis results. In practice, wavelet
analysis is performed up to the 4" scale. The residual scale
functions coefficients are left unchanged, in order to
obtain a perfect reconstruction of the deterministic
harmonic part of the sound. With respect to the simple 1/f
—like model the amount of parameters increases. However
we have a robust compression ratio (approximately 1/40)

providing on the other side a very high quality method for
coding voiced audio signals.

In some cases, as in brass instruments, the noise of the
first subband of the harmonics is not well representable by
a white noise source model. Rather, a shot noise or
elementary waveform (wfs) ( [7], [8] ) model seems to be
more suited in order to simulate the stochastic part of the
sound due to the breath and saliva gurgling, which is
pretty significant in the case of brass instruments.

One can also achieve better spectral approximations by
employing the recently introduced Arbitrary Band
Wavelet Transforms [9], [10]. A significant improvement
is obtained in the case of noisier sounds such as single
reeds (oboe, bassoon) at a higher computational cost. One
has to implement an iterated Laguerre transformation of
the DWT channels in order to get rid of the power-of-2
subdivision constraint. In this way the subbands can be
freely adapted to a spectrum shape not necessarily 1/f-like
(see Fig. 2).

A similar frequency warping can be performed in order to
deal with non-harmonic sounds. The P-band filter bank is
warped to be adaptable to any distribution of the partials.
We apply the model only to the steady part of the sounds,
while keeping the transient data.

A lot of improvement can be still realized in terms of
computational optimization, adapting the technique to the
particular sound that one wants to reproduce or compress.
In our model we make the same amount of computation
over all the frequency range. Actually not all the
harmonics need an LPC analysis. Also, the higher
harmonic can be successfully shaped by means of a much
more restricted set of parameters, or can be represented by
a higher wavelet scale level. In this way it is possible to
reduce considerably the amount of resynthesis data.

5 Experimental results

We tested our method on a wide range of instrumental
sounds. We used the synthesis bank to reproduce each
HBWT subband over all the harmonic range. Then we
tested the resynthesis technique on each subband,
obtaining very good results from the acoustical point of
view. A higher or lower level of approximation can be
obtained according to the use of normal DWT banks or of
Arbitrary Band Wavelets banks at the cost of a lower or
higher computational complexity. In cases of sounds with
variable dynamics we can adopt a short-time computation
of the energies of the number HWBT expansion
coefficients. In this case the of parameters increases but
still remains in a convenient range.

As mentioned in the above, in the case of brass
instruments higher fidelity is obtained by adopting also a



elementary wfs resynthesis (see Fig. 3). We considered the
cases of a trumpet and of a trombone; in both cases it is
easy to select some elementary waveforms according to a
good pitch detector. In fact, the waveform of the first
subband essentially contains the part of the periodic breath
impulses produced by the player.
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Fig. 2 a) Spectrum of one harmonic of a real clarinet
b) Spectrum of one harmonic of HBWT.
¢) Spectrum of one harmonic of warped HBWT
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Fig. 3 Example of an elementary waveform extracted from the
reconstructed first subband of a trombone with pitch
P=480 samples. This is one of the wfs employed for the
resynthesis.

Also in this case the quality of reproduction is very good
compared to the little number of wfs needed to obtain it.

6 Conclusion

In this paper we presented some further developments of a
recently introduced analysis and resynthesis technique
based on a new family of multiwavelets, i.e., the HBWT.
This method concerns voiced sounds in speech and music
and shows many interesting features in the context of
structured audio.

From the point of view of sound synthesis it solves the
problem of sustained tones. Our method is able to render
the natural dynamics of the timbre by a relatively
restricted set of parameters. The longer is the sound one
want to reproduce the more efficient is our method from
the computational point of view.

From an audio data compression point of view our
technique guarantees very good rate values for a high
quality resynthesis.
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