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ABSTRACT

We develop a spline calculus for dealing with fractional
�
derivatives. After a brief review of fractional splines,
�
we � present the main formulas for computing � the

�
fractional derivatives of the underlying basis functions.
In particular, we show that the γ th fractional derivative
of a B-spline of degree ! α"  (not necessarily integer) is
given by the # γ th fractional difference of a B-spline of
degree 
�

α−" γ . $ We use these results to derive 
�

an%
improved version the filtered backprojection algorithm
&
for tomographic reconstruction. The projection data is
'
first interpolated with splines; the continuous model is
then used explicitly for an exact implementation of the
�
filtering and backprojection steps.

1. INTRODUCTION

Splines are made up of polynomials and are essentially
(
as easy to manipulate. One operation that is especially%
simple to implement is differentiation. It has the same)
effect on splines as it has on polynomials: it reduces the*
degree by one. The derivative of a B-spline of degree 
�

n+
is given by

Dβ
, n- (x. )

/
= ∆βn- −1(

0
x. )

/
=βn- −1(x. + 1

2
1 ) −βn- −1(x. − 1

2
1 )

where � ∆  denotes the central finite difference operator.
The implication of this differentiation formula is that
one can calculate spline derivatives simply by applying!
finite 
'

differences to the B-spline 
2

coefficients � of the
�

representation. Thus, with splines, 3 one ! has 
4

an exact*
equivalence * between finite differences and
differentiation and not just an 
�

approximate % one as % is
usually 5 the 

�
case in numerical analysis. % This is a%

property 6 that 
�

can be exploited advantageously % for
implementing 
&

differential signal processing operators!
[6].

Our 
7

purpose 6 in this 
�

paper 6 is to 
�

consider � more8
general forms of differentiation (fractional derivatives)#
and to develop the corresponding spline calculus. The%
main difficulty 

�
with fractional derivatives is that the

�
derivatives of polynomials (or 
�

splines) ) are % no-longer

polynomial when the order of differentiation in non-
integer. This forces us to consider the enlarged family
of fractional splines [7]; these are reviewed in Section
2. In Section 3, we present the differentiation rules for
the fractional 

'
splines and % show ) that this 

�
family 
'

is
closed under fractional differentiation: specifically, the
γ th derivative of a fractional spline of degree α"  is a
fractional spline of degree α−" γ , where α"  and γ  are
not necessarily integer. Finally, in Section 

(
4, we

indicate how these results are useful for improving the
implementation of ! the filtered 

'
backprojection (FBP)

0
algorithm for tomographic reconstruction [4, 5].

2. FRACTIONAL SPLINES

In this 
�

section, we define 
�

the 
�

fractional splines ) and%
summarize the main properties of their basic
constituents: the fractional B-splines. For more details,
refer to [7].

2.1 Power functions

The purest examples of fractional splines of degree α"
are the one-sided and rectified power functions, x.

+
α9  and

x.
*

α9
, : which � both exhibit * one ! singularity ) of order ! α"

(Hölder exponent) at the origin. The one-sided power
function is defined by:

x.
+
α9 =

x. α9 x. ≥; 0
<

0,
<

otherwise!
 
 
=
î 

.$ (1)

For α∉" N
>

,:  its Fourier transform is Γ (
0
α+" 1)/( j

?
ω@ )

/ α+9 1.

The second symmetric type, x.
*

α9
, is defined as the:

function whose Fourier transform is Γ (
0
α+" 1)/ ω@ α+9 1

.
For α"  non-even, it 

&
is a (rectified) 

0
power 6 function;

otherwise, it has an additional logarithmic factor:

x.
*
α9 =

x. α9
−2sin(πA

2
1 α" )

/ ,: α"  not even

 
x. 2n- log x.
(
0
−1)1+B n- πC ,: α" = 2n (even)

 

 
=  

î 
 
 

(2)
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2.2 Causal fractional B-splines
D

By analogy with the classical B-splines, one constructs
the fractional causal B-splines by 
�

taking the 
�

(α+" 1)-
fractional difference of the one-sided power function
'

β
,

+Bα
9
(
0
x. ):

/
=

∆
E

+
α+9 1x.

+
α9

Γ (
0
α+" 1)

=
1

Γ (
0
α+" 1)

(
0
−1)k

F
k

F
=0

G
+∞

∑
H α+" 1

k
  
I

 
J 
K  

L

 
M x. − k(

N
)
O

+Bα
9

  (3)

where � Γ (u +1)= x. uP eQ −xR dx∫
S

 is Euler’s gamma function.

∆
E

+
α+9 1  is the (α+" 1)-fractional difference operator; it is

/
a % convolu-tionT  operator whose transfer function is

ˆ ∆ 
E

+
α+9 1(

0
ω@ )

/
= (1− e− j

U
ωV )α+9 1 = (

0
−1)k

F
k

F
=0

G
+∞

∑
H α+" 1

k
  

I

 
J 
K  

L

 
M e− j

U
ωV k

F
. (4)

The fractional B-splines are in L2
1  for α" >− 1

2
1 . $ They

are compactly supported for % α"  integer; otherwise, they
decay like 
�

x. −(
W
α+9 2)

1
 (cf. [7], Theorem 3.1). The Fourier

domain equivalent of (3) is
�

ˆ β 
,

+
α9 (ω@ ) =

1− e− j
U
ωV

j
?
ω@

  
I

 
J 
K  

L

 
M 

α+9 1

(5)
0

2.3 Symmetric fractional B-splines

We 
�

construct the 
�

symmetric ) B-splines 
2

by taking
�

(α+" 1)-symmetric fractional differences of the rectified
power function:6

β
,

∗
α9 (

0
x. ):

/
=

∆ ∗
α+9 1x.

∗
α9

Γ
X

(
0
α+" 1)

=
1

Γ
X

(
0
α+" 1)

(
0
−1)k

F α" +Y 1

kk
F

=0
G

+∞B
∑

H
 x. − k

Z
∗
α9
  

(6)
0

where � ∆
E

*
α9  Fourier

[
← \ → ]     1− e− j

U
ωV α9

 is the symmetric)
fractional 
'

difference operator. Similar 
(

to their causal�
counterparts, � these functions are % not compactly�
supported either unless ) n+  is odd, in which case they

�
coincide � with � the 

�
traditional polynomial 6 B-splines.

2
When 
�

α"  is not odd,  ^ they decay like 
�

x. −(
W
α+9 2)

1
 and their

asymptotic % form 
'

is 
&

available % [7]. The Fourier
_

counterpart of (6) is simply�

ˆ β 
,

∗
α9 (ω@ ) =

sin(ω@ /
`

2)

ω@ /
`

2
a

α+9 1

. (7)
0

Note that the expansion coefficients on the right hand
b
side ) of (3) and % (6) are % generalized versions c of the

�
binomials. They are both compatible with the following
d
extended definition:*

u

v
  

I

 
J 
K  

L

 
M = Γ

X
(
0
u +Y 1)

Γ (
0
ve +1)Γ (

0
uf − v +1)

(8)
0

where the 
�

gamma # function replaces the factorials
encountered in the standard formula when uf  and v  are
both integer. The coefficients in (6) are a re-centered
version given by

 rg  

k
=

r

k
Z

+
r

2

 
I

 
J 

K  
L

 
M (9)

2.4 Fractional splines

In most 8 general terms, fractional splines may 8 be
d

defined as % linear combinations of shifted ) fractional
power functions or ! fractional B-splines. As in the
polynomial case, it is usually more advantageous to use
the second type 

�
of ! representation. The fractional B-

splines have all the good properties of the conventional
B-splines, except that they lack compact support when
α"  is not an integer. In particular, they form a Riesz

h
basis which ensures that that B-spline representation is
stable numerically. Thus, if we consider � the 

�
basic

integer grid, we may represent a fractional spline signal
by its B-spline expansion

s(x. )
/

= c(k)β
, α9 (

0
x. − k)

/
k

F
∈i Z

j∑
H

(10)

where we use the generic notation β
, α9 (x. )  to specify any

one of the fractional 
'

B-splines (β
,

+
α9 (

0
x. ) , or ! β

,
∗
α9 (x. ) ).

/
What this means is that a fractional spline signal sk (

0
x. )

with knots at the integers is 
&

unambiguously5
characterized through its B-spline coefficients c(k),
k ∈ Z  (discrete/continuous representa-tion). The
representation is one-to-one—there is exactly * one!
coefficient cT (

0
k
Z
)
/
 by sample value sk (k

Z
). Note that this

spline representation is compatible which the traditional
model used in signal processing for it can be shown
that the signal (10) converges to a bandlimited function
as the order of the spline increases [1].

3. FRACTIONAL DIFFERENTIATION

3.1. Fractional derivatives

We consider two 
�

versions of ! fractional 
'

derivatives
�

which can be defined in the Fourier domain. The first
type, which is compatible with Liouville's definition

�
[2], is given by

D
l γm f

n
(
0
x. )  

/ Fourier← \ → ]      ( j
?
ω@ )γm ˆ f 

n
(
0
ω@ )

/
(11)

where ˆ f 
n

(ω@ )
/

= f
n

(x. )
/
eQ − j

U
ωV xR dx∫

S
 denotes the Fourier

transform of f
n

(x. )
/
 and % where � zo γm = zo γm

e j
U
γm arg(p zq )

r
 with�

j
? = −1 and arg(z) ∈s −π,: πC[ [ .
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The second type of ! derivative, 
�

which is a%
symmetrized version of first, is defined by)

D
l

*
γm f

n
(x. )  

/ Fourier← \ → ]      ω@ γm ˆ f 
n

(ω@ ) (12)
0

Note that the first type agrees with the usual definition
b
of the derivative when ! α"  is integer, while the second
one only does when ! α"  is even.

3.2 Differentiation rules
t

The general B-spline differentiation rules are

Dγm β, +Bα
9
(x. )

/
= ∆+Bγ

m
β

,
+Bα−γ9

(x. ) (13)
0

D*
γm β, *

α9 (
0
x. )

/
= ∆*

γm β, *
α−γ9

(x. )
/

(14)
0

where � Dγm  and D∗
γm  are defined by (11) and % (12),

0
respectively. This is established easily in 3 the Fourier

_
domain. For instance, to obtain (14), we substitute (7)
�
in (12) and rewrite the Fourier transform of 
&

D
l

*
γm β, *

α9 (
0
x. )

/
as%

  ω@ γm sin(ω@ /
`

2)

ω@ /
`

2

α+9 1

=
sin(ω@ /

`
2)

2
a

γm

1−eu j
v ω γ

w xy z{
⋅

sin(ω@ /
`

2)

ω@ /
`

2

α+9 1−γ

ˆ β 
|

*
α−γ (

W
ωV )

r} ~� � �� �

We now briefly 
�

indicate how 
4

these 
�

rules 3 can � be
d

applied to obtain the fractional derivative of the spline%
signal ) in 

&
(10). Taking 

�
the fractional 

'
derivative and

interchanging the order of summation, we get

Dα9 s(x. ) = cT (k
Z
)∆γm β, α−γ9

(
0
x. − k

Z
)
/

k
F

∈ Z
∑

H

            = ∆γm ∗ c(
�

)
�
(
0
k
Z

)
d

�
(

W
k

F
)

r� �� �� β
, α−γ9

(x. − k)
k

F
∈i Z

j∑
H

(15)
0

where we have moved the fractional difference operator�
into 
&

the discrete 
�

domain. 
�

Thus, the 
�

B-spline
2

coefficients � d
�

(k)  of Dα9 s(
0
x. )  are obtained by

convolving the � cT (k
Z
) ’s with the digital filter ∆γm  whose

frequency response is  (1− eQ − j
U
ωV )γm  or |1

�
− eQ − j

U
ωV |γ

m
,

depending on the type of derivative.
�

4. FRACTIONAL SPLINES AND
TOMOGRAPHY

The 
�

mathematical basis for the standard filtered
'

backprojection tomographic reconstruction algorithm is
d
the following identity 
� ∀

�
f

n
∈s L

�
2

1 (
0
R

� 2
1
) (cf. [3])

f
n

(x. ,: y� )
/

= R
� * KRf

�
(x. , y� )

/
= R

� * K p�
θ

� (
0
t� )/{

�
} (16)

0

with � t = (x. ,: y� )
/
⋅ �θ 

�
 where �θ =

�
(cosθ

�
,sin: θ

�
)
/
∈s S  is the unit

vector c that specifies ) the direction of the projection;

p�
θ

� (
0
t) = R

�
θ

� f
n

(
0
t) = f

n
( �x . )

/
R

� 2∫∫
S

δ
�

(
0 �
x . ⋅  θ −

¡
t)

/
d
� ¢

x .  is 
&

the Radon
�

transform�  of f
n

 and R
� ∗  is the so-called backprojection

operator; it is the adjoint of ! the 
�

Radon or ! projection�

operator R . The right hand side of (16) provides the$
filtered backprojection solution for the recovery of the
function f

n
(
0
x. ,: y� )  from its projection data p�

θ
� (t� )/ .$

The algorithm proceeds in two 
�

steps. First, each*
projection p�

θ
� (

0
t) is filtered continuously with the ramp

or Ram-Lak filter [4]; the crucial observation here is
that the filtering 

n
operator K  is proportional 6 to 

�
our!

fractional derivative D∗ ↔£ ω@ ; i.e., K = (2πC )−1D* .
Second, the filtered projections are projected back onto
the image and averaged according to the formula

R* K p�
θ

� (t� )/{
�

} =
1

2πC D* p�
θ

� (t)
/
d
�
θ ≅
¡ 1

2N
> D* p�

θ
�

i
(
0
t)

i
¤
=1

N
¥
∑

H
0

G
πA
∫

S

(17)

with t� = (x. ,: y� )
/
⋅ ¦θ 

¡
. The reconstruction formula (16) is

exact provided that one treats the projection data p�
θ

� (
0
t)

as a continuum both in terms of t�  and θ
¡

. In practice,$
however, one has only access to 

�
a % finite number of

projections at the angles θ
¡

i
¤ , and the continuous average:

in (17) is usually replaced by the discrete one on the
right. The error can � be 

d
assumed % to be 

d
negligible

provided that the number of projections N
>

 is sufficient.
In our method, we assume that the projection data

at angle θ
¡

 is a fractional spline of degree α" :

p�
θ

� (
0
t� ) = R

�
θ

� f
n

(
0
t� ) = cT (

0
k
Z
)β

,
*
α9 (

0
t − k

Z
)

k
F

∈i Z
j∑

H
(18)

After symmetric differentiation (ramp filter), 
'

we find
that

D* p�
θ

� (t)
/

= d(
0
k
Z
)
/
β

,
*
α−9 1(

0
t� − k)

k
F

∈ Z
∑

H
(19)

where the d
�

(k
Z
)  are obtained by applying the symmetric

finite differences to the cT (k
Z
) (cf. (15)). Thus, we have

an explicit * continuous � representation of the 
�

filtered
projection which can then be directly plugged into (17).

In practice, we are given the sampled values of the
§

projection p�
θ

� (k)  and the first step is to determined the
B-spline coefficients c(k)

/
 such that the spline model

interpolates these values exactly. This can be done by
digital filtering. Combining both 

d
filters together

(interpolation and ramp-filter), we get

d(
0
k)

/
= (h∗ ∗ p�

θ
� )(

/
k)

/
(20)

where h∗  is the digital filter whose transfer function is

h∗ (
0
k)  

/ Fourier
[

← \ → ]     
1− e j

U
ωV

B
¨

∗
α9 (e j

U
ωV )

=
sin() ω@ /

`
2) /

`
2

sinc(ω@ /
`

2
a

π−C n)
α+9 1

n- ∈ Z
∑

H

 (21)

In our implementation, we select α"  even (typ. α" = 2
or 4) 

©
such ) that the 

�
basis functions in (19) are
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polynomial 6 B-splines that are compactly � supported.
This allows us to use the spline model (19) to our full
�
advantage in the backprojection part of % the algorithm
(Eq. (17)). The digital filtering part 
0

of ! the algorithm
(20) is implemented in the 
0

Fourier 
_

domain since ) the
�

filter h∗  has infinite support. The interesting aspect of
the algorithm is that, once we have selected the spline
�
model (18), all other aspects % of the computation � are%
exact. In particular, the discretization of the ramp filter*
is achieved implicitly through (21).
&

Some experimental results are presented in Fig. 1;
(

to facilitate the comparison, we give the reconstruction
�
errors amplified by a * factor of ! four. The test image
(Fig. 1d) is of size 
0

128×128 and its Radon transform
was � computed over ! 256 equidistant * angles. % Fig. 1a
displays 
�

the 
�

reconstruction error for the 
�

standard
algorithm % (Shepp-Logan 

0
filter [5]) with linear

interpolation 
&

for 
'

the backprojection. 
d

The 
�

PSNR is
26.89dB; switching to the Ram-Lak filter improves this
a
measure to 28.03dB. The reconstruction error for the
proposed FBP algorithm with 6 α" = 2 is shown in Fig.
1b (PSNR=29.80). The results are % slightly better
(smaller 
0

magnitude of ! the 
�

error) * than the 
�

standard)
approach (Fig. 1a or Ram-Lak filter), even though the%
backprojection 
d

was implemented using the 
�

same)
piecewise linear interpolation model. This suggest that6
the use of a consistent design, where the ramp filter is
�
discretized 
�

in accordance % with � the underlying 5 signal)
model, is helpful. The best 

d
results (PSNR=30.37)

were obtained with � α" = 4 (cf. Fig. 1c); in this case, the
backprojection was implemented using cubic B-spline
d
basis functions. Here we suspect that the main reason
d
for 
'

the improvement 
&

is the use 5 of a % higher 
4

order!
interpolation 
&

model, especially * in 
&

the backprojection
part of the procedure.6

5. CONCLUSION
ª

The fractional splines offer the same conceptual � ease*
for dealing with fractional derivatives as the polynomial
splines do with derivatives. ) In the 

�
B-spline domain,

�
fractional 
'

differentiation 
�

gets translated 
�

into 
&

simple
fractional 
'

finite differences. This spline ) calculus�
provides 6 a general # tool 

�
for the 

�
discretization and

implementation of fractional derivative operators.
&

The Ram-Lak filter, which plays a crucial role in
tomography, corresponds to our symmetric differential
�
operator ! D* ← → \  ω@ . It is an $ non-local operator ! that
can be implemented � exactly provided 6 that 

�
one has a%

spline representation of the projection data. ) We 
�

have
proposed a modification of the standard FBP algorithm6

that takes advantage of this property. We have found
that working with � splines is also % beneficial for the
back-projection part of the reconstruction process.

Fig. 1: Reconstruction errors for the 
«

various¬
algorithms. (a) standard reconstruction using  the

«
Shepp-Logan filter, (b) fractional spline
reconstruction with α" = 2 , (c) fractional spline
reconstruction with ® α" = 4

©
, (d) test image (Shepp-

Logan phantom).
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