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ABSTRACT

We develop a spline calculus for dealing with fractional
derivatives. After a brief review of fractional splines,
we presentthe main formulas for computing the
fractional derivatives of the underlying basis functions.
In particular, we show that theth fractional derivative

of a B-spline of degreet (not necessarily integer) is
given by theyth fractional difference of a B-spline of
degree a—- y. We use theseresults to derive an
improved version the filtered backprojection algorithm
for tomographic reconstruction. The projection data is
first interpolated with splines; the continuous model is
then used explicitly for an exact implementation of the
filtering and backprojection steps.

1. INTRODUCTION

Splines are made up of polynomials and are essentially
as easy to manipulate. One operation that is especially

simple to implement is differentiation. It has the same
effect on splines as it has on polynomials: it reduces the
degree by one. The derivative of a B-spline of degree
is given by

DB"(x) = AB™(x) =B" " (x +3) —B"(x—3)
whereA denotes the central finite difference operator.
The implication of this differentiatioiormula is that
one can calculate spline derivatives simply by applying
finite differencesto the B-spline coefficients of the
representation. Thus, with splinesne has an exact
equivalence between finite  differences and
differentiation and not just aapproximateone as is
usually the case in numerical analysis. This is a
property that can be exploited advantageouslyfor
implementingdifferential signal processingoperators
[6].

Our purposein this paperis to considermore
general forms of differentiation (fractional derivatives)
and to develop the corresponding spline calculus. The
main difficulty with fractional derivativesis that the
derivatives of polynomials (osplines)are no-longer

polynomial when the order ddifferentiationin non-
integer. This forces us to consider the enlarged family
of fractional splines [7]; these are reviewed in Section
2. In Section 3, we present the differentiation rules for
the fractional splines and show that this family is
closed under fractional differentiation: specifically, the
y th derivative of a fractional spline of degreeis a
fractional spline of degree- y, wherea and y are

not necessarilyinteger. Finally, in Section 4, we
indicate how these results are useful for improving the
implementationof the filtered backprojection(FBP)
algorithm for tomographic reconstruction [4, 5].

2. FRACTIONAL SPLINES

In this section,we define the fractional splinesand
summarize the main properties of their basic
constituents: the fractional B-splines. For more details,
refer to [7].

2.1 Power functions

The purest examples of fractional splines of degree
are the one-sided and rectified power functiogisand

Ix[, which both exhibit one singularity of order a
(Holder exponent) at the origin. The one-sided power
function is defined by:
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For all N, its Fourier transform i§ (a+ 1)/(jw)™ ".
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The second symmetric typ]: , is defined as the
function whose Fourier transform iB(a+ 1)/ joof**.
For a non-even,it is a (rectified) power function;
otherwise, it has an additional logarithmic factor:
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2.2 Causal fractional B-splines

By analogy with the classical B-splines, one constructs
the fractional causal B-splines lgking the (a+ 1)-
fractional difference of the one-sided power function
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wherel (u +l):fx"e"‘dx is Euler's gamma function.
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A" is the (a+ 1)-fractional difference operator; it is
aconvolu-tion operator whose transfer function is

i =a-e =Rl B @

The fractional B-splines are i, for a >—3. They
are compactly supported for integer; otherwise, they
decay likelx|***? (cf. [7], Theorem 3.1). The Fourier
domain equivalent of (3) is

"u _ _e_jm +1
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2.3 Symmetric fractional B-splines
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We construct the symmetric B-splines by taking
(a+ 1)-symmetric fractional differences of the rectified
power function:
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is the symmetric

where A® «fMT— f-e™[
fractional difference operator. Similar to their causal
counterparts, these functions are not compactly
supported either unlegsis odd, in which cas¢hey
coincide with the traditional polynomial B-splines.

Whena is not odg they decay likelx|‘* * and their
asymptotic form is available [7]. The Fourier
counterpart of (6) is simply
~ sin@/ 2)""*
o) = |———— 7
Bo(w) /2 (7)

Note that the expansion coefficients on the right hand
side of (3) and (6) are generalizedversions of the
binomials. They are both compatible with the following
extended definition:

@ﬁ_ C(u+1)
v+ (u-v+1)
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where the gamma function replaces the factorials
encountered in the standard formula wheand v are
both integer. The coefficients in (6) are a re-centered
version given by

o

2.4 Fractional splines
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In most general terms, fractional splines may be
defined as linear combinationsof shifted fractional
power functions or fractional B-splines. As in the
polynomial case, it is usually more advantageous to use
the secondtype of representationThe fractional B-
splines have all the good properties of the conventional
B-splines, except that they lack compact support when
a is not an integer. In particular, they formRiesz
basis which ensures that that B-spline representation is
stable numerically. Thus, if we considerthe basic
integer grid, we may represent a fractional spline signal
by its B-spline expansion

s(x) = % c(k)B” (x~K)

kelZ

(10)

where we use the generic notat@i(x) to specify any
one of the fractional B-splines (B$(x), or BX(x)).
What this means is that a fractional spline sigs(x)

with knots at the integers is unambiguously
characterizedhrough its B-spline coefficients c(k),
kOdZ (discrete/continuous representa-tion). The
representationis one-to-one—thereis exactly one
coefficiente(k) by sample values(k). Note that this
spline representation is compatible which the traditional
model used in signal processing for it can be shown
that the signal (10) converges to a bandlimited function
as the order of the spline increases [1].

3. FRACTIONAL DIFFERENTIATION

3.1. Fractional derivatives

We considertwo versions of fractional derivatives
which can be defined in the Fourier domain. The first
type, which iscompatiblewith Liouville's definition

[2], is given by

D'f(x) <M= (jo)’ f(w) (11)
where f(m):jf(x)e'mdx denotes the Fourier

transformof f(x) and where 2’ =|z"e"*%® with
j=J-1 andarg(z) &[-m nf.



The second type of derivative, which is a
symmetrized version of first, is defined by

D'f(¥) [T o' f(w) (12)
Note that the first type agrees with the usual definition
of the derivative wher is integer, while the second
one only does whea is even.
3.2 Differentiation rules
The general B-spline differentiation rules are

DYBL(x) = AR (x) 13)

DB (x) = AR (x) (14)
where D' and DY are defined by (11) and (12),
respectively. This is established easilytive Fourier

domain. For instance, to obtain (14), we substitute (7)
in (12) and rewrite the Fourier transform Bf'B: (x)

as
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We now briefly indicate how theserules can be
applied to obtain the fractional derivative of the spline
signalin (10). Taking the fractional derivative and
interchanging the order of summation, we get
D s(x) = % c(k)A'B* " (x ~ k)

KOz
= Z(A" Oc)(k)B*™ (x—K)
—
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(15)

where we have moved the fractional difference operator
into the discrete domain. Thus, the B-spline
coefficients d(k) of D°Yx) are obtained by
convolving thee(k)’s with the digital filter AY whose
frequency responseis (1-e ™) or |1-e[,
depending on the type of derivative.

4. FRACTIONAL SPLINES AND
TOMOGRAPHY

The mathematical basis for the standard filtered
backprojection tomographic reconstruction algorithm is
the following identity@f EIL,(R®) (cf. [3])

F(xy) = RKRf(x,y)= RK{p,(t)} (16)
with t =(x,y) ® wheref =(co,sinB) €IS is the unit
vector that specifiesthe direction of the projection;
po(t) =R f(t) = HRZ F(X)B(% B ~t)dx is the Radon
transformof f and R is the so-callecbackprojection
operator; it is the adjoint othe Radonor projection

operatorR. The right hand side of (16) provides the
filtered backprojection solution for the recovery of the
function f(x,y) from its projection datg, (t).

The algorithm proceeds in twsteps. First, each
projection p,(t) is filtered continuously with the ramp
or Ram-Lak filter [4]; the crucial observatidmere is
that the filtering operator K is proportional to our
fractional derivative D, «lal; i.e., K=(2m D..
Second, the filtered projections are projected back onto
the image and averaged according to the formula

. 1% 1o
RK{m®}=— f D. p, (t)d@ sz D.p, (t)
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with t = (x,y) @. The reconstruction formul4l6) is
exact provided that one treats the projection ¢g(8)
as a continuum both in terms bfand 0. In practice,
however, one has only accegs a finite numberof
projections at the anglds, and the continuous average
in (17) is usually replaced by the discrete one on the
right. The error can be assumedto be negligible
provided that the number of projectiddds sufficient.

In our method, we assume that the projection data
at anglef is a fractional spline of degree

po(t) =R f(t) = k/;c(k)ﬁ‘f (t-k) (18)

After symmetric differentiation (ramfilter), we find
that

D.py() = B OBtk (19)
where thal(k) are obtained by applying the symmetric
finite differences to the(k) (cf. (15)). Thus, we have
an explicit continuousrepresentatiorof the filtered
projection which can then be directly plugged into (17).
In practice, we are given the sampled values of the
projectionp, (k) and the first step is to determined the
B-spline coefficientsc(k) such that thespline model
interpolates these values exactly. This can be done by
digital filtering. Combining both filters together
(interpolation and ramp-filter), we get

d(k) = (h; CIpe) (k)
whereh. is the digital filter whose transfer function is
-e9  sinw/2)/2
B! (e”) ) lsinc@/2m-n)*"

nz
(21)

In our implementation, we seledt even (typ.a =2
or 4) such that the basis functions in (19) are

(20)

h(k) -




polynomial B-splines that are compactly supported.
This allows us to use the spline model (19) to our full
advantage in the backprojection part tfie algorithm

(Eq. (17)). The digital filtering parbf the algorithm

(20) is implemented in th&ourier domainsince the
filter h. has infinite support. The interesting aspect of
the algorithm is that, once we have selected the spline
model (18), all otheraspectsof the computationare
exact. In particular, the discretization of the ramp filter
is achieved implicitly through (21).

Some experimental results are presented in Fig. 1;
to facilitate the comparison, we give the reconstruction
errors amplified by dactor of four. The testimage
(Fig. 1d) is of sizel28x128 and its Radon transform
was computedover 256 equidistantangles.Fig. la
displays the reconstruction error for the standard
algorithm (Shepp-Logan filter [5]) with linear
interpolation for the backprojection.The PSNR is
26.89dB; switching to the Ram-Lak filter improves this
measure to 28.03dB. The reconstruction error for the
proposed FBP algorithm witkh =2 is shown in Fig.
1b (PSNR=29.80).The results are slightly better
(smaller magnitudeof the error) than the standard
approach (Fig. 1a or Ram-Lak filter), even though the
backprojection was implemented using the same
piecewise linear interpolation model. This suggest that

that takes advantage of this property. We have found
that working with splinesis also beneficial for the
back-projection part of the reconstruction process.

Fig. 1: Reconstructionerrors for the various
algorithms. (a) standardreconstructionusing the

Shepp-Logan filter, (b) fractional spline
reconstructionwith @ =2, (c) fractional spline
reconstruction withat = 4, (d) test image (Shepp-
Logan phantom).

the use of a consistent design, where the ramp filter iS Refer ences

discretizedin accordancewith the underlying signal [
model, is helpful. The best results (PSNR=30.37)

were obtained witlw = 4 (cf. Fig. 1c); in this case, the
backprojection was implemented using cubic B-spline
basis functions. Here we suspect that the main reason
for the improvementis the use of a higher order
interpolation model, especiallyin the backprojection

part of the procedure. [3]

5. CONCLUSION

The fractional splines offer the saneenceptualease

for dealing with fractional derivatives as the polynomial
splines do with derivativesin the B-spline domain,
fractional differentiation gets translatedinto simple 5]
fractional finite differences. This spline calculus
provides a general tool for the discretization and
implementation of fractional derivative operators. [6]

The Ram-Lak filter, which plays a crucial role in

tomography, corresponds to our symmetric differential
operatorD. <£ —wl. It is an non-local operatorthat 7]
can be implemente@xactly provided that one has a

spline representation of the projection deide have
proposed a modification of the standard FBP algorithm
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