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Abstract

In recent papers the authors introduced in the range of
acoustical signals the use of a powerful instrument for
the analysis and modification of signals: the Laguerre
Transform, mapping a signal space into another one
whose frequency axis is warped in a controlled way.
While altering the overall frequency content of specified
signals is very useful in many applications, most real
world signals show time-varying features, e.g., in both
their amplitude and frequency content. A second step,
therefore, has been that of extending the principles and
the architecture of the Discrete Laguerre Transform to
the time varying case so that the frequency content of a
signal could be displaced over time to different values,
realizing therefore a time varying warping transform.
This transform has nice features and high regularity, it
allows perfect reconstruction and it can effectively
succeed in regularizing real world signals or in
modifying in a controlled way some of their relevant
parameters. These features well match those of ordinary
sound signals whose frequency content is slowly varying
with time, such as intonation in speech, glissando and
vibrato in music. It also meets many processing needs for
a wide range of sweep signals. In the paper, after briefly
recalling the relevant features of the recently introduced
transform, many examples are given, demonstrating the
wide range of applications for which it seems to be well
suited.

1 Introduction

Most real time signals depart significantly from the ideal
model of a constant-pitch, oscillating signal. Due to many
different physical reasons, the underlying oscillatory
features are mostly time varying. Also, some relevant
information is bound to these features, such as the
perception of a pleasant timbre, the internal texture of a
sound, interpretation cues and communicative or
expressive contents. A transform able to compensate
against these effects or, in turn, to add these features
would be without doubt a strong tool for the analysis, the
representation and the modification of sound signals.

Sergio Cavaliere

ACEL, Dipartimento di Scienze Fisiche,
Universita “Federico II” di Napoli,
Complesso Universitario di M.S.Angelo,
Via Cinzia 80126 Napoli
e-mail: cavaliere @na.infn.it

2 Frequency Warping and the Discrete Laguerre
Transform

Starting point of our work is the Discrete Laguerre
Transform. It can be shown that by projecting a discrete
time signal onto the orthonormal set of Laguerre
sequences [1][2] we obtain a new signal whose spectrum

X(e™) is simply the frequency-warped version of the
source spectrum X (e”):

X(e'/c") — Ao(e'/m))'(\'(ejw")).
Here A,(e”)is a normalizing factor, which, due to the

unitary property of the transform, preserves energy while
passing from the source to the destination domain. The
warping law 9(®) is a function of a single parameter, the

real pole of a first order all-pass filter section. The
transformation may be controlled by this parameter -- the
Laguerre parameter -- which allows a large degree of
freedom in the choice of the warping characteristics. The
authors used this transformation in conjunction with other
transforms such as the Discrete Wavelet Transform and
the Pitch Synchronous Wavelet Transform, introducing a
new class of orthogonal transforms having the advantage
of arbitrarily allocating the analysis bands [3][4][11].
They have also pointed out an entire new range of
applications for the introduced transforms [8][9][12].

Finally, the Laguerre Transform can be computed by
conventional DSP methods, by means of the all-pass
cascade structure depicted in Fig. I. The time-varying
structure generalizes that of the constant case. In the
constant case all the filters A;(z) are equal to a single all
pass function whose phase 9(®) actually turns out to be

the warping law described in the above.

2 The Generalized Discrete Time Laguerre
Transform

The Laguerre transform may be extended to its time
varying version. For this purpose, however, we must
introduce a new parametric class of sequences, namely
the Time-Varying Discrete Laguerre Sequences
[TOJ[TT][12]. These sequences generalize the Laguerre
sequences in that they allow for modification of the



frequency content of the signal by means of a time-
varying frequency warping law.

Consider the sampled dispersive delay line shown in Fig.
I, consisting of a chain of real first-order all-pass filters

-1
A,,(z):zb—bj'] with —T<b, <1,
—0,2

a sampling device closing at time k=0 and a shift-register
loaded at k=0 with the outputs of the filters and
outputting the sequence of samples X[k] at regular clock
intervals. The dispersive line reverts to a linear delay line
when all the parameters b, are zero, and in the case of

b, constant from section to section, it reverts to the
structure for computing the ordinary Laguerre Transform.
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Figure 1. Sampled dispersive delay line.

Since the input sequence is time-reversed, the line
implements the scalar product

nl={(p,.x)=Y x[kl¢,[kl, (D
k

where
Q,lkl=a/[k]*a[k]*..*xa,lk].

Hence, the z-transform of the sequence ¢, [k] is an order
n all-pass filter with transfer function

1 ifn=0

O (=i T =b . >
(2) HI ; —kl if n>0 )
k=1 1—=Dr2

The output sequence X[k] may be interpreted as the set of
coefficients of a suitable signal expansion. In fact, the set
of sequences Y, [k] whose z-transforms are

I
I_blz_l

I—bnbn+1 - (I)n(Z) lfl’l>0
(I_bnz)(l_bn-l-lz )

ifn=0

¥ (2)= 3)

can be shown ([11][12]) to be biorthogonal to the
set @,[k],1i.e.,

Wo0n) = YW, k10, [K]=3, ,uln] S
k=0

and

Y v, [k, [m] =5, ,ulk], (5)

n=0

where u[k] is the unit step sequence. The set is complete
over causal sequences. Property (5) requires some
tecnical conditions on the asymptotic behavior of the
parameters b, . However, any finite selection of them
within the specified range —1<b, <1 leads to a set that
can be embedded in a biorthogonal complete set; this is in
fact the practical case where the signal to transform is
causal and also has finite duration. Correspondingly, the
signal x[k] is expanded onto the set y ,[k] as follows

k=Y #1k K], ©)

n=0

where the coefficients are given by (1).

There are several equivalent structures for implementing
the inverse transform. The one shown in Fig. 2 is based
on the following recurrence:

Y. (2)=V, (¥, (2), n>1
where
1-b,b,., 7' =b,,
1-b, b, 1-b,,,z"

V()=

and we used the convention that b, =0. The analysis

coefficients X[k] are used as weights for the dispersive
tapped delay line in a structure that generalizes Laguerre
filters [T][2].

I the sequence of parameters b, =b is constant, the
resulting transform, as expected, reverts to a biorthogonal
variant of the Laguerre transform. The biorthogonal
sequences Y ,[k] and @,[k] may be used
interchangeably for the analysis or for the synthesis, with
obvious modifications of the structures.
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Figure 2. Structure implementing the inverse
biorthogonal transform

4. Time-Varying Frequency Warping

Time-varying frequency warping is obtained by means of
the analysis structure shown in Fig. 1, which, actually,
may be seen as a special type of time-varying filter. Each
of the y, lines, n=0,1,..., carries a filtered version of the
input signal x(-k), the transfer function at index n being
the cascade of the sections up to n. The signals y, (k) are
therefore filtered versions of the input signal by the
transfer functions

®,(2)=A(2) Ay(2)-+- A, (2).



For a real signal x(k) we have in the frequency and time
domains, respectively:

Y,(0)=X" () ,o),

I . (e .
yn(k)=gfn X (m)[HAm((D)Je]k do

m=1
The n-th sample of the output sequence stored in the shift
register is given by the sample of the y,(k) sequences, at
time k=0:

ifn] = y,(0)= éj“ X (@) [f[Am@)jdco =(x9,) ™

where,

(x,9,)=Y x(k) ¢, (k)

is the orthogonal projection coefficient of the signal over
the analysis set.
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Fig. 3 Frequency modulation by means of warping

The A,, (®) are all-pass functions characterized by a pure
phase response: A, (®)= ¢ =, where for || <7

b, sin®

9, (®) = +2arctan =2arctan ( 2 tan %) . ®
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Fig. 4 A deeply swept sinusoid

At the n-th stage we obtain:

Y0,

n
®,0)=]] ¢ @ = =
r=1

For signals which are close to be periodic, as happens in
most sound signals, the resulting frequency warping for
each partial may be analyzed in the following way. For
each partial we fall in the simple case of a single complex
exponential tone

x(k)=e"",

with
X (@) =213 (® -o,) for|o/ <.
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Fig. 5 The swept sinusoid is completely "regularized”

In this case, using the above inversion formula (7), we
obtain for the output sample:

fnj=e B ©)

This formula has a simple meaning when the all-pass
sections are identical, with 6, (0)=6(w), r=1,2.... In this

Jn8(@g)

case we have: X[n]=e and the output is a

complex exponential whose frequency is the image of the
source frequency @, via the warping map 6(®), as
expected in this case of ordinary Laguerre Transform.

If different warping laws are applied at each stage by
using distinct values of the parameters b,, then (9)
corresponds to a phase-modulated signal, whose features
and spectrum depend on the 6.(w) laws. This signal
corresponds to a frequency modulated sinusoid,
depending on the choice of b,, as shown in Fig. 3.
Frequency warping works properly even in case of drastic
modification in the source frequency as shown for the
linear frequency sweep in Fig. 4, which, after warping
appears perfectly reduced to the single tone as in Fig. 5.

5. Acoustical applications of the transform

A first example concerns vibrato removal. Once we have
identified the law of frequency variation over time in a
sound, we may compute the sequence b, of values of the
Laguerre parameters by means of which the vibrato may
be removed. Actually warping the sound by use of this
sequence of parameters allows complete removal of
vibrato, as shown in Fig. 6. In Fig. 7 we can see that the
low frequency component (amplitude envelope) is
practically unmodified under the warping transform. In
fact the low frequency components, at the usual small
values of the Laguerre parameters, move along an
approximately 45-degree straigth line under the warping
law.

In other applications we may want to increase the depth
of vibrato in order to add some expression to our sound.
The same warping law may be added, but now the
Laguerre parameters will be chose to have opposite sign
and will be scaled by a proper coefficient in order to
impart any desired depth of vibrato: -kb,. Finally the
same depth may be easily modified over time, as in fact it



happens in real signals. For example, the vibrato depth
may be linked in an arbitrary way to the amplitude
envelope of the signal.
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Fig. 6 The pitch of a flute sound showing vibrato and the
same after removal by TVFW.
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Fig. 7 Time domain flute sound before and after the
removal of vibrato
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Fig. 8 Karplus-Strong plucked string original and with
added vibrato.

A second example is provided, where we added to a
simple sound produced by the Karplus-Strong algorithm
a selected amount of vibrato (Fig. 8). In this case we may
impart the desired amount of 'dispersion' to the harmonic
structure (see [5]) and, in the mean time, also add vibrato,
thus improving the naturalness of the sound. This is
obtained by adding a non-zero mean value to the
sequence of warping coefficients. In this way we obtain a
mixture of effects typical of the constant and time-
varying frequency warping transforms.

Other applications of time-varying frequency warping
range from flanging-phasing to chorusing effects, when
one mixes multiple time-varying warped versions of the
same signal with the original signal, using suitable gains.
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