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Abstract — We study the problem of finding a char-
acterization for the channel that results when a queue
is operated under multiple access conditions. In such
systems, the mechanism by which different sources
gain access to the channel plays a fundamental role in
defining what is the channel available to each source.
In this paper therefore we study the structure and
properties of these control devices in some detail. Un-
der some (mild) technical conditions, and under mod-
eling assumptions inspired by TCP/IP’s flow control
(the standard control algorithm in the current Inter-
net), we are able to characterize the optimal controller
for this problem. We also present some numerical sim-
ulations, to help develop an intuition on what exactly
this control box does.

I. INTRODUCTION
A Bits Through Multiple Access Queues

Let SM...8™) denote N information sources. Each S
can be in one of two possible states: when in the ON state,
symbols (drawn from a finite alphabet) are generated accord-
ing to some unspecified distribution; when in the OFF state, no
symbols at all are generated. Source state transitions between
ON/OFF states are independent over time. The symbols gen-
erated by each S are placed in the buffer of a single-server
queue, which serves them using some predetermined schedul-
ing algorithm (typically, first-in first-out). In this proposed
scenario, two most important questions arise:

o What is a fair split of the service rate of the queue
among the different sources? Note that this is essen-
tially equivalent to the classical problem of flow con-
trol in networks. In a network with several users and
interconnecting nodes, the need for flow control —i.e.,
for controlling the amount of data that each source is
allowed to inject into the network— arises because of
the limited available network resources. The purpose
of flow control is to allocate these resources efficiently,
while keeping this allocation fair among users. Classical
papers on this subject are [7, 9], among others.

o What is the Shannon capacity of the channel available
to each source? In [2], Ananthram and Verdd answer
this question in a special case of the above described
setup: a single source (i.e., N = 1), always in an ON
state.

In this work we formulate and present the first steps to-
wards solving a multiuser version of the Bits Through Queues
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problem of [2], which we refer to as the Bits Through Multiple-
Access Queues problem. Note that although certainly related,
our problem is significantly more complex than that consid-
ered in [2]. To start with, under the assumptions of [2] the
first question is meaningless, since there is only one source; yet
in the general case, the mechanism used to split the queue re-
sources among information sources will essentially determine
the channel available to each one of them, and hence its ca-
pacity. Further complications arise from the fact that, in the
general case, the number of active sources changes over time.
A study of flow control techniques suitable for use in the con-
text of our multiuser version of the problem considered in [2]
is the main focus of this paper.

B Distributed Flow Control with Partial Information

In the design of the desired control modules, there is a wide
range of options in terms of information available to the con-
troller, to the sources, to the queue itself, etc. Two extreme ex-
amples correspond to cases when (a) there is a unique, global,
central controller which can observe exactly the state of the
queue and of all the sources at any point in time; and (b) a
decentralized, local controller which can only see the state of
the individual source it controls, as well as some feedback in-
formation that he obtains about the state of the queue. This
situation is illustrated in Fig. 1.
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Figure 1: To illustrate two extreme cases in which control
may be necessary. Left: a unique centralized global controller;
right: local decentralized controllers. In general, global con-
trollers are desirable since they will give the best network per-
formance. The problem is that their communication complex-
ity often renders them prohibitively complex in practice, thus
the interest in local decentralized control devices.

Observe in Fig. 1 that, for the centralized controller, the so-
lution to any reasonable formulation of the flow control prob-
lem is indeed trivial: knowing all the information about the
state of individual sources and of the buffer state, it is enough
to allocate to each user a service share equal to the ratio be-
tween the service rate and the number of sources active at a
given moment. The second type of controller, more realistic
but harder to implement, is what we focus on in this work.



to yiéld to mathematical analysis in the context of the Bits
Through Multiple-Access Queues problem, yet also rich enough
to be a good model for real-life situations.

C  Main Contributions and Organization of the Paper
Two important contributions are presented in this paper:

e The definition itself of the Bits Through Multiple-Access
Queues Problem. The model we set up is a good ap-
proximation for many network problems, in which many
sources have to share a common router. Plus, this is
done under assumptions which are an abstraction of sit-
uations typically encountered in real-life networks (like
the Internet).

e A characterization of the optimal control strategy that
multiple sources competing for access to a shared queue
should use to access the queue.

We feel what makes our problem formulation interesting in
itself —and different from the one considered in [2]- is precisely
the shared, multiple access nature of our channel. To the
best of our knowledge, problems of sharing network resources
(such as flow control [9]) had not been considered before in an
information theoretic setting.!

The rest of this paper is organized as follows. In Section II
we present a dynamical system model for the network. In
Section III we give a formal statement for the optimal control
problem, and we develop solutions in two cases: (a) assuming
a fully observed state, and (b) in the presence of partial infor-
mation only. In Section IV we present a number of simulation
results, where the performance of the proposed controller was
tested with numerical examples. Finally, in Section V, final
remarks are presented, and future work is discussed.

II. SYSTEM MODEL

A Intuition
Consider the following discrete-time model:2

o At time k, source S generates a symbol with proba-
bility ugj), and remains silent with probability 1 — ug).
The control task consists of choosing values for all u(*)’s,
at all times.

e Switching between ON/OFF states for any source occurs
independently from the states of other sources.

e The service rate of the queue is deterministic.

e The queue has a finite buffer. When a source generates
a symbol to put in this buffer, if the buffer is full then
the symbol is dropped and the source is notified of this
event; if there is room left in the buffer the symbol is
accepted, and the source is notified of this event as well.®

1For example, a recent survey has pointed out precisely how
little impact information theory has had in the networking commu-
nity [6].

2 Although the original problem calls for a continuous-time for-
mulation, many challenging problems arise in discrete-time as well,
and so we decided to start with the latter as a means of managing
the complexity of the task at hand.

3Note that we could have assumed the buffer size to be infinite,
with notification when the occupancy level of this buffer exceeds
a fixed threshold value. From the point of view of the design of a
controller, both formulations seem equivalent.

to coordinate their efforts in order to choose an appropriate
set of control actions u (i = 1...N): instead, the only co-
operation we allow is in the form of having all sources imple-
ment the same control technique, based on partial information
about the state of the queue that they have access to. This ap-
proach is inspired by the mechanics of TCP’s flow control [9],
and is a major difference we have found with some of the pre-
vious theoretical work on flow control (e.g., [1, 4, 11, 12, 13]).
An illustration of the proposed model is shown in Fig. 2.

B(ul)

B(W2)

O~

finite buffer deterministic

servicerate

B(UN

Figure 2: To illustrate the proposed model. N sources switch
between ON/OFF states, and generate symbols with a (con-
trollable) probability ufj). The only information a source has
about the network is a sequence of 3-valued observations: ac-
knowledgments, if the symbol was accepted by the buffer,
losses if it is rejected due to overflow, and nothing if the de-
cision was not to transmit at the current moment (denoted 1,

-1, 0, respectively).

A fundamental observation, playing an enabling role in the
analysis presented later in this paper, is that due to the inde-
pendence of ON/OFF switching times among sources, the vari-
ation in time of the number of active sources is a Markov pro-
cess. Intuitively, this is because the number of active sources
at a given time depends only on the number of active sources
at the previous time, and on the difference between the num-
ber of sources that start/cease transmission at the current
time. Denoting by z the number of active sources at mo-
ment k, we may write

A
Trt1 = T + g — Cp = Tk + ek,

where tx, ¢, are the number of sources starting/ceasing trans-
mission at time k. Now, since t; and ¢ are iid sequences, so is

er 2 tr —ck. But sums of iid sequences are Markov sequences,
qed [3].
B System Dynamics

Our system is described at time k by the following param-
eters:

e i €{1,...,N} - hidden chain states - number of flows
active at time k.*

. r,(f) € {-1,0,1} observations (as defined above); i are
the indexes of the sources active at moment k.

. ug) € (0, 1] source intensities, controllable (as defined
above).

4Note that we do not include in our system model the case of
zero active sources, since in that case there is nothing to control!



— Transition probabilities among the hidden states
p(zr = v|zr—1 = s) (independent of the source in-
tensities ukl)), forming the transition matrix [P]s,

— Pr(zo) - the initial probability density over the
states.

e Information available via measurements:

— p(r|z,u): the probability of occurrence of an ob-
servation r € {—1,0,1}, when z sources are active,
and when symbols are generated at rate u.

Note that in setting up this model we have made some-
what of a simplifying assumption. Suppose at time k there are
Zr = s sources active, then some of them start/cease trans-
mission, and at time k£ + 1 we have v # s active sources. Will
p(r|v,u) at moment k + 1 be an accurate description of the
probabilities with which observations will occur? Not neces-
sarily, since it will take some time until all the remaining active
sources adjust their injection rates accordingly. However, af-
ter that transient period and before the next state transition,
p(r|v,w) will be an accurate description again. The simplify-
ing assumption to which we make reference above consists of
neglecting these transients, and take them as model inaccura-
cies: for as long as the chain does not switch states wildly, this
assumption should not pose problems. This issue is explored
extensively via numerical simulations (see Section IV and [5]).
The model itself is illustrated in Fig. 3.
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Figure 3: An illustration of the model from the point of view
of a single source, based on a simple birth-and-death chain for
the evolution of the number of active sources.

Based on the assumptions stated above, the dynamics of
the system are given by:

Tpr1 = f(ow,er) (1)
r® = g(arul, e ™), (2)

for £ > 0 and ¢ the indexes of the active sources. Here, f
and g are the state transition and observation functions of the
(hidden) Markov chain, e, e}, are iid sequences that drive this
state-space model. In what follows, we will neglect index i,
considering the system from the point of view of a particular
active source, the others employing similar behaving individ-
ual controllers. A typical sequence of events is illustrated in
Fig. 4.
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Figure 4: System dynamics. At time k the system is in state
2. Then the value of a control action uy, is chosen, given the
information available up to that point (i.e., the sequence of
past observations 7o, ...,7,—1). Then a new observation ry is
generated, and a state transition occurs.

III. THE CONTROL PROBLEM

A Formal Problem Statement

Consider a transmission that is going to last for K time
units. Our goal will be to maximize the average throughput,
subject to a constraint on the probability of losing symbols.
Formally, this is stated by saying that we seek to find a policy
g = {uo,...,ux—1} that solves

K-1
max 7 p(re = 1|k, ur) 3)
k=0

under the constraints

p(r = —1llzg,ux) <T (k=0,...,K-1), 4)

for a fixed threshold parameter T € (0, 1].

In the remainder of this section two solutions to this prob-
lem will be presented. In the first one, the state z; will be
assumed to be known. Our interest in this case is because
although this is not a good model for our system, the con-
struction of the controller for this system naturally precedes
the construction of our sought controller. Finally, we will de-
velop the case of interest.

B Solution under the Assumption of a Fully Observed State

Suppose first that the state zp is known at moment k,
and keep in mind that the state xj is independent of the
control sequence ug,k = 0,...,K — 1. Denote the N-
dimensional column vector ¢(u) = [¢(1, 1), . . ., (N, u)]” (with
c(z,u) = p(l|z,u)), and an (arbitrary) terminal utility cx =

[ex(1),...,cx(N)]T. We then define the “cost-to-go” function
V by
Vk = cn (5)
Vi = sup {c(u) + P(u)Vis1} (6)

where Vi, Vk are N-dimensional column vectors, the domain
of optimization over u is derived from the constraints (4), and
the supremum in u is taken separately for each component of
the vector equation. It is well known that an optimal pol-
icy is given by a sequence uy that achieves the maximum for
each 7 = z [10]. But in the specific case of our system, state
transitions do not depend on the control, and so the transi-
tion matrix is just P(u) = P. That means the optimum is
achieved for all V4, for sup,cy{c(w)} with U determined by
the constraints (4). So we see that the cost (3) is optimized
when greedy, step-by-step maximization is carried out.



p(r = 1|z, u) are monotonically non-decreasing functions of
u. Hence, (3) is maximized when the constraints (4) become
equalities. If any wuy satisfies (4) with inequality, then we
can choose a bigger uj until equality is reached, and then
the corresponding term in the overall cost function will also
increase. Therefore, the optimal policy g = {uo, ..., ux—1} is
given by any solution of

p(rk = =1|zp,ur) = T. (7)
C  Solution with Partial Information

This case is slightly more complicated, since now we assume
the state sequence xj cannot be observed. The problem in
this case is that Markovian control policies based on state
estimates are not necessarily optimal. However, we do know
that optimal policies depend only on an information state I,
which satisfies:

e Tj is a function of 7o, 71, ..., 7%_1,U0, U1, ..., Uk_1-
) ) ) ) b b) b

® Zi4+1 can be determined from Zg, 7k, Uk-

Essentially, Z5 should contain all the information about xj
that can be inferred from the observations, and it should be
possible to compute it by updating the previous information
state with the latest available data. Such policies (depending
on Iy only) are called separated policies, for obvious reasons.
A typical choice is to let Z; be Pr(zs|r* 1, u*~1), the con-
ditional probability of z given all the past observations and
controls applied [10].7

C.1
We define the new utility function to be ¢(Z,u) =

p(r = 1|&,u), which, using the total probability law, can be

expanded as

Optimization Function and Constraints

c(Zr,ux) = plry=1| Pr(zk|rk_1,uk_1),uk)
= > plri = 1lze, Pr(alr® ' ub 1), w)
T

p(@k] Pr(zx|r® =t u*7h), ug)

Tl

Next we note that, since u; does not affect xx and only influ-
ences r and later observations,

FL T ) = plalr® T WY, (8)

p(zk| Pr(zk|r
so finally we have

c(:ik, uk)

Zp(ﬁc = Uz, ur)p(aelr® ™ u*")
T
E@kc(mk,uk). (9)

This new utility function has a nice interpretation: it is the
average of the functional for the fully observed case at step k,
where the average is taken relative to the measure on states
given by Z;. Similarly, the new constraints are

(k=0,...,K-1).

A

Esp(re = =1k, ur) < T (10)

5Note: the derivation of the recurrence equations for % is omit-
ted due to its length, and its rather elementary nature (but it
can be found in [5]). Here we only mention that indeed, Zxy1 =
F[ry,uk, %], where F is a linear function up to a normalization
term.

Zp(rk = 1|xk7 uk)p(mkl Pr(xkl'rk_la uk_l)a uk)'

The solution of our new constrained optimization prob-
lem satisfies a set of Dynamic Programming (DP) equa-
tions [10], in which the constraints come into play by re-
stricting the feasibility of certain policies. A control sequence
g =1{9go,-..,9x-1} is said to be feasible if
(11)

U = gk(To,. .. ,Tk_1) € U

where Uy, is the control constraint set at time k.
Define, for each probability measure © on N elements, the
cost-to-go function V as:

Erlc(xx)]

sup Er[c(zk,u) + Vi1 (Flr, u, 7])]
u€EUx

V() =
Ve(w) =

(12)

= sup[)_ (i, w)r(s) +

w€Ur

+ Z Vk+1(F[Tk:u7Tr])p(Tklﬂ-:u)]: (13)

rp=—1

where
Ur = {u|Ep(-1jz,u) < T}. (14)
The set of optimization U, is given by the constraint that
has to be imposed at present step and at future steps given the
possible evolution of the information state, and it is deduced
from inequality (10). Since p(—1|z,u) is a non decreasing
function of u, for any z we have that

Ur = (0, Umax, ], (15)
where Umax, is the unique solution of equation
E.p(—1l|z,u) =T. (16)

Then a policy is optimal if uy, achieves the supremum for 7 =
Tk

C.3 Practical Difficulties

There are some practical difficulties to implement and sim-
ulate the optimal controller in the partial information case
as defined above, having to do with the fact that our state
space is the whole simplex of probability distributions over
N symbols (N is the number of sources in the system). For
simulation of these equations on a computer, that simplex has
to be discretized. However, a trivial discretization consisting
of performing scalar quantization of each entry in 7 leads to
an exponential number of states. Therefore, appropriate vec-
tor quantization techniques are required for this purpose. The
development of such a simulation is the current focus of our re-
search work. However, a simple, approximate solution exists,
which we use in this paper to report some numerical results
on the performance of the proposed controllers, inspired by
the case of complete information.

The approximation is based on a simple observation. If
a control uy is chosen at time k, it does not influence the
next state xry1, which changes independently. Instead, it will
influence the value of the observation ry, which in turn will
determine the update to the information state Zp+1. Hence,
our approximation consists of choosing the maximum control
at moment k that still obeys the loss constraint, since this
will maximize the throughput and the probability of getting
information about the state of the network. Thus we perform



solving for wy,

Ez,p(ry = =1z, ur) = T. (17

Note that Zx is computed at step k with the information avail-
able up to that moment.

Although we do not have a formal proof yet, because con-
trol only influences memoryless observations, we suspect that
the greedy controller will be optimal in the partial information
case as well. This subject is further discussed in [5].

IV. NUMERICAL SIMULATIONS

In this section we present results obtained in numerical
simulations of the proposed controller. We consider a birth-
and-death transition probability matrix P with the parameter
p being the probability of the event that the number of active
sources increments or decrements. We further assume that p
does not depend on the number of sources active at a given
moment.

In a first experiment, we study the influence of the differ-
ent observations on the next information state. We find that
the effect of a positive acknowledgment (r = 1) is to shift the
probability mass in # towards the region of a small number
of active sources and the next control will be bigger than the
previous one. A negative ack (r = —1) though has the op-
posite effect (mass moves toward states with many sources,
and next control will be smaller). In the case when nothing
is sent (r = 0), the probability density remains basically the
same (except for the effect of the transition probability matrix
P). This oscillatory effect is intuitively very pleasing, and it
resembles the dynamics of TCP. The effect is illustrated in
Fig. 5, where different updates over time of the information
state are shown, from the point of view of a fixed source.

0.4 T T
02k moment k=4; obs.=0

02k moment k=6; obs.=1

2 3 4 5 6 7 8 9 10
0.4 T T T T T T T T

moment k=18; obs.=0

| moment k=19; obs.=-1

2 3 4 5 6 7 8 9 10
0.4 T T T T T T T T

moment k=20; obs.=0

o2r ﬁ
0 I I I I I I I

1 2 3 4 5 6 7 8 9 10
number of sources

Figure 5: Probability over the number of active sources for
a fixed source, at different times, for parameters: T = 0.04,
p =0.001, N = 10 (p is the probability that the chain switches
to one more or one less active source, in a birth-and-death
model). Observe the shifts in probability mass: positive ack
at time 6, negative ack at time 19.

In a second experiment, we want to show the different con-
troller behaviors as a function of the loss parameter 7. We
find that for high thresholds the controller is more ’optimistic’,
being able to adapt fast to changes in the number of active

rates. Alternatively, when the thresholds are low, inefficien-
cies may occur in the form of underutilizing the network (when
a few sources cease transmission, but the controller takes a
long time to adapt to these new conditions). In Fig. 6 these
opposite effects are illustrated, with experiments for large and
small values of the threshold.

We see that when the probability of state switching is rel-
atively high, sources start or cease transmission frequently,
and the controller cannot follow closely the changes in the
environment conditions, because it has to estimate the state
probability density over a small time interval. The third ex-
periment puts in evidence the capacity of adaptation of local
controllers when the transition probability is relatively small,
even for a medium valued threshold. The bottom subfigure in
Fig. 6 illustrates how the state change is more easily followed
in this case by our fixed source.

control

control

control

01l

Figure 6: Control sequences for a fixed source and two differ-
ent thresholds, a symmetric birth-and-death chain with tran-
sition probability p and NV = 10 sources. Up: 7' = 0.1,p = 0.1,
middle: T = 0.02,p = 0.1, down: T = 0.05,p = 0.02. “Or-
acle” refers to an ideal controller which can actually observe
the hidden state.



observe now all the active sources. Fig. 7 plots the maximum
and the minimum controls observed at a given moment, no
matter which sources exhibit them. It can be seen that while
not all the sources transmit at the bandwidth fair share at
a certain time step, the difference among the controls stays
small and their values oscillate around the fair share, while no
source remains privileged over a long period of time.

1 T T T T T

— minim
0.9 —— maxim -
oracle

o 100 200 300 400 500 600
time

Figure 7: Minimum and maximum values of the control
set over time. Note: the sources transmitting at mini-
mum/maximum value are not necessarily the same at different
time moments.

One last example of a simple network with N = 2 sources
shows how the resulting controllers can simultaneously be fair
with respect to the other active sources and adapt reasonably
to changing activity levels. Fig. 8 shows that when the state
does not change very fast, a good choice of the threshold may
lead to good performance results.

V. CONCLUSIONS

In this work we have shown the structure of an optimal
controller to be used by multiple sources to gain access to
a shared queue, under the assumption that the sources are
independent, switch between ON/OFF states over time, and are
not allowed to communicate with each other. We regard this
as the first step in coming up with a complete characterization
of this multiple-access channel, one that can be used to study
capacity and coding problems in this context, along the lines
of [8].
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