On Source/Channel Codes Of Finite Block Length

Michael Gastpar, Bixio Rimoldi and Martin Vetterli¹
Communication Systems Department
Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland

e-mail: Michael.Gastpar, Bixio.Rimoldi, Martin.Vetterli@epfl.ch

Abstract — For certain fortunate choices of source/channel pairs, all sophisticated coding is in vain: for them, a code of block length one is sufficient to achieve optimal performance [1]. Is the set of "fortunate choices" larger if we allow for codes of block length M? For a certain class of discrete memoryless source/channel pairs, we can prove that the answer is negative as long as M is finite.

I. Definitions

Consider a discrete memoryless source with alphabet S which is reconstructed in an alphabet \hat{S} . The source is specified by a probability mass function (pmf) p_S and a distortion measure $d: S \times \hat{S} \to \mathbb{R}_0^+$. Consequently, we denote the source by (p_S, d) . A discrete memoryless channel with input alphabet \mathcal{X} and output alphabet \mathcal{Y} is specified by a conditional pmf $p_{Y|X}$ and an input cost function $\rho: \mathcal{X} \to \mathbb{R}_0^+$. By analogy to the source, we denote the channel by $(p_{Y|X}, \rho)$.

II. SINGLE-LETTER CODES

A single-letter source/channel code is a pair of functions (f,g), where $f:\mathcal{S}\to\mathcal{X}$ and $g:\mathcal{Y}\to\hat{\mathcal{S}}$. If the source (p_S,d) is transmitted across the channel $(p_{Y|X},\rho)$ using the code (f,g), the achieved distortion is $\Delta=Ed(S,\hat{S})$ and the cost needed to achieve this is $\Gamma=E\rho(X)$. This constitutes an optimal communication system only if Δ could not be achieved at lower cost, and Γ does not permit to achieve lower distortion. These two conditions are relatively difficult to verify in general. They require the computation of rate-distortion and capacity-cost functions. However, optimality can also be verified by the following conditions:

Theorem 1. For a discrete memoryless source (p_S, d) , a discrete memoryless channel $(p_{Y|X}, \rho)$ and a single-letter code (f,g), suppose that $I(S;\hat{S}) > 0$ and $I(X;Y) < C_0$. This is an optimal communication system if and only if for some constants $c_1 > 0$, $\rho_0, c_2 > 0$, and a function $d_0(s)$,

$$d(s,\hat{s}) = -c_1 \log p(s|\hat{s}) + d_0(s) \tag{1}$$

$$\rho(x) = c_2 D(p_{Y|X}(\cdot|x)||p_Y(\cdot)) + \rho_0 \tag{2}$$

and $I(S; \hat{S}) = I(X; Y)$.

This is a slight generalization of the result presented in [2]. For a proof, see [1].

Define the set S of all discrete memoryless source/channel pairs for which there exists a single-letter code that performs optimally, i.e.

$$\mathbb{S} = \{(p_S, d, p_{Y|X}, \rho) \mid \exists (f, g) : \text{optimal} \}.$$

In S, we find for example the Bernoulli(1/2) source with Hamming distortion and the binary symmetric channel (with unconstrained input).

III. CODES OF FINITE BLOCK LENGTH

A natural extension of these results is to consider source/channel codes of block length M, namely a pair of functions $(f^{(M)}, g^{(M)})$, where $f^{(M)}: \mathcal{S}^M \to \mathcal{X}^M$ and $g^{(M)}: \mathcal{Y}^M \to \hat{\mathcal{S}}^M$. Since all alphabets are discrete, $(f^{(M)}, g^{(M)})$ can be interpreted as a single-letter code for an appropriate source over the alphabet \mathcal{S}^M and the corresponding extended channel with input alphabet \mathcal{X}^M and output alphabet \mathcal{Y}^M . Then, we can apply Theorem 1.

An interesting question is as follows: by allowing codes of finite block length M rather than only single-letter codes, will the set $\mathbb S$ grow? This question is not answered directly by Theorem 1. Define the set $\mathbb S^{(M)}$ of all source/channel pairs for which there exists a source/channel code of block length M that performs optimally. In general, one would expect that this set is larger than $\mathbb S$. However, we can prove that for a subset of all discrete memoryless source/channel pairs, it is true that $\mathbb S^{(M)} = \mathbb S$. In particular, we can make the following statement:

Proposition 2. Consider only discrete memoryless source/channel pairs that satisfy the following: all alphabets are of the same cardinality, p(s) > 0 for all s, the channel transition probability matrix is invertible and the distortion measure is such that the matrix with entries $2^{-d(s,\hat{s})}$ is invertible. Then,

$$S^{(M)} = S.$$

Outline of proof. For a given source pmf p_S , channel conditional pmf $p_{Y|X}$ and code $(f^{(M)}, g^{(M)})$, we compute $d^{(M)}$ and $\rho^{(M)}$ as in Theorem 1. But since by assumption, the source is constrained to be memoryless, $d^{(M)}$ must split additively, i.e. $d^{(M)}(s^{(M)}, \hat{s}^{(M)}) = \sum_{i=1}^M d(s_i, \hat{s}_i)$. By analogy, since the channel also has to be memoryless, $\rho^{(M)}$ must split in a similar fashion. One can show that the assumptions made in the proposition together with the fact that $d^{(M)}$ and $\rho^{(M)}$ have to split additively imply that there is also a source/channel code of block length 1 that achieves optimal performance. See [1].

ACKNOWLEDGMENTS

Discussions with Prof. Emre Telatar are gratefully acknowledged.

REFERENCES

- [1] M. Gastpar, B. Rimoldi, and M. Vetterli, "To code, or not to code: On the optimality of single-letter communication," Technical Report, EPFL-DSC, Lausanne, 2001.
- [2] M. Gastpar, B. Rimoldi, and M. Vetterli, "To code or not to code," in *Proc. IEEE Int. Symp. Info. Theory*, (Sorrento, Italy), p. 236, June 2000.

 $^{^{1}}$ M. Vetterli is also with the Dept. of EECS, UC Berkeley, USA. 2 The theorem also holds for *discrete-time* memoryless systems, and a similar theorem holds in case $I(X;Y) = C_{0}$ [1].