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ABSTRACT

A flexible multiscale and directional representation for images is
proposed. The scheme combines directional filter banks with the
Laplacian pyramid to provides a sparse representation for two-
dimensional piecewise smooth signals resembling images. The
underlying expansion is a frame and can be designed to be a
tight frame. Pyramidal directional filter banks provide an effective
method to implement the digital curvelet transform. The regularity
issue of the iterated filters in the directional filter bank is examined.

1. INTRODUCTION

Over the last decade, wavelets had a growing impact on signal
processing, mainly due to their good performance for piecewise
smooth functions in one dimension. Unfortunately, such is not the
case in two dimensions. In essence, wavelets are good at catch-
ing zero-dimensional singularities, but two-dimensional piecewise
smooth signals resembling images have one-dimensional singular-
ities. That is, smooth regions are separated by edges, and while
edges are discontinuous across, they are typically smooth curves.
Intuitively, wavelets in 2-D obtained by a tensor-product of one
dimensional wavelets will be good at isolating the discontinuity
across the edge, but will not see the smoothness along the edge.
This disappointing behavior indicates that more powerful bases are
needed in higher dimensions.

In the filter bank literature, Bamberger and Smith [1] had pro-
posed an effective filter bank for the directional decomposition of
images. This directional filter bank (DFB) has the important prop-
erty that it can be critically sampled while achieving perfect recon-
struction. In order to obtain sparse image representations, where
maximum information is packed into a small number of samples,
we propose a combination of DFB with a multiresolution pyramid,
the result is called pyramidal directional filter bank (PDFB).

Recently, Candes and Donoho [2] pioneered a new system of
representations named curvelet that was shown to be suited for
objects which are smooth away from discontinuities across smooth
curves. Their initial transforms were intended for functions on the
continuous space R2 . We will demonstrate that with PDFB, one
achieves a curvelet-like decomposition for discrete-time signals.

The outline of the paper is as follows. Section 2 examines
the DFB, together with new results on regular and orthogonal iter-
ated DFB. Section 3 introduces the PDFB with its frequency de-
composition and frame properties. Section 4 establishes the links
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between PDFB and the curvelet transform. Finally, Section 5 il-
lustrates some numerical experiments on real images.

2. DIRECTIONAL FILTER BANKS

The DFB realizes a division of 2-D spectrum into 2n wedge-
shaped slices as shown in Fig. 1 using an n-levels iterated tree-
structured filter banks [1]. The method is to use appropriately the
quincunx filter bank (QFB) [3] together with modulations and ro-
tations. Rotations in DFB are achieved by resampling matrices Ri
(that is, matrices with determinant equal to �1, so they represent
a rearrangement of the input samples).
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Fig. 1. Directional filter bank frequency partitioning.

More specifically, the blocks in the binary decomposition tree
of the DFB are made up from two extensions of the QFB: the mod-
ulated QFB and the “skewed” QFB’s (Fig. 2); the former one is
used at the first two levels, while the later one is used at the re-
maining levels. Therefore, it can be shown that the DFB is perfect
reconstruction (PR) or orthogonal if and only if its kernel QFB is
PR or orthogonal, respectively. As a result, the design of DFB es-
sentially amounts to the design of QFB with the desired properties.
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Fig. 2. Building blocks of the DFB. (a) Modulated QFB. (b)
Skewed QFB’s with i = 1; 2; 3 and 4.

In the ideal case, the Fourier transform of a DFB equivalent
filter will be 1 only in its designated region. For a near horizontal
subband, this is the region that is sandwiched between two lines



!1 = l!2=N and !1 = (l + 1)!2=N , where N = 2n�2 and
l = �N; : : : ; N � 1. After some manipulations, we can compute
the impulse responses of such a filter as
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where  (x) = (1� cos(�x))=(�x), which behaves similarly to a
1-D sinc function. In other words, g[n] is the difference between
two ridge functions with sinc-like ridge profiles, that are oriented
around the line n2 = �n1l=N and damped by 1=n1.

Since all the equivalent filters in the DFB are derived from the
filters in the kernel QFB, an interesting and important question is
what condition should one imposes on the filters of the QFB so
that iterations in DFB lead to regular 2-D signals? In general, the
regularity issue for 2-D iterated filter banks is much more involved
than in the 1-D case. We sketch the main results here, for a more
rigorous treatments, see [4].

Intuitively, at each iterated step, the frequency responses of the
equivalent filters in the DFB are thinner (by half) in one direction
but the same in the other. Likewise, the overall sampling matrices
are dilated (by double) in only one direction. Thus the regularity
issue of the DFB iterated filters can be linked with 1-D iterated
filters along the dilated direction.

Let G0(z1; z2) be the quincunx lowpass filter in the DFB.
With a change of variable, the regularity of iterated DFB filters
can be directly related with the regularity of the following filter

G
(n)
0 (z1; z2) =

n�1Y
k=0

G0(z
2k

1 ; z2): (1)

For a fixed value of z2, let us define the following 1-D filters

F (z1) = G(z1; z2) and F (n)(z1) = G
(n)
0 (z1; z2); (2)

then we have

F (n)(z1) =
n�1Y
k=0

F (z2
k

1 ): (3)

By examining their impulse responses, we can show that
G
(n)
0 (z1; z2) is smooth (for example with a certain Hölder degree)

if and only if F (n)(z1) is smooth. Equation (3) is the well-known
wavelet-type iterated filters in 1-D; and thus the filter F (z1) is re-
quired to be regular of order N > 1 as

F (z1) = (1 + z1)
NR0(z1): (4)

Since (4) have to be satisfied for all value of z2, the regularity
condition on G0(z1; z2) becomes

G0(z1; z2) = (1 + z1)
NR(z1; z2): (5)

In addition, we would like to have orthogonal DFB’s, which
means G0 has to be an orthogonal quincunx filter or satisfies the
following equation [5]

G0(z1; z2)G0(z
�1
1 ; z�12 )

+G0(�z1;�z2)G(�z�11 ;�z�12 ) = 2: (6)
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Fig. 3. Eight iteration of the smallest 2-D orthogonal quincunx
filter for DFB. Each curve corresponds to a 1-D sequence of
g
(8)
0 [n1; n2] where n2 is fixed.

We notice that there exists an infinite number of solutions for
(5)-(6) with G0(z1; z2) = G0

0(z1) where G0
0(z1) is a 1-D regular

order N filter (for example Daubechies filters). We refer to such
solutions as “degenerated” since they are in fact 1-D filters. For
general true 2-D filters, there is no simple design method like in 1-
D since we lack a factorization theorem for multivariate polynomi-
als. Using Gröbner bases technique [6], we found the smallest size
non-degenerated quincunx orthogonal regular filter with N = 2
for DFB is
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It is also the unique solution (up to time reversal) with this
size. The iterated filters can be checked to converge to continuous
2-D functions, which is illustrated in Fig 3.

3. PYRAMIDAL DIRECTIONAL FILTER BANKS

By its nature, the DFB is designed to capture the high frequency
components (representing directionality) of images. Therefore,
low frequency components are handed poorly by the DFB. In
fact, with the frequency partition shown in Fig. 1, low frequen-
cies would “leaks” into several directional subbands, hence DFB
does not provide a sparse representation. To improve the situation,
low frequencies should be subtracted previous to the DFB. This
prompts us to combine DFB with a multiresolution scheme.

One way of achieving multiscale decomposition is to use the
Laplacian pyramid (LP) introduced by Burt and Adelson [7]. The
LP decomposition at each step generates a sampled lowpass ver-
sion of the original and the difference between the original and the
prediction, results in a bandpass image. A drawback of the LP is
the implicit oversampling. However, in contrast with the critically
sampled wavelet scheme, the LP has the distinguishing feature
that each pyramid level generates only one bandpass image (even
for multidimensional cases) which does not have “scrambled” fre-
quencies. This frequency scrambling happens in the wavelet filter
bank when a highpass channel, after downsampling, is folded back
into the low frequency, and thus its spectrum is reflected. In the LP,
this effect is avoided by only downsampling the lowpass channel.

Therefore the LP permits further subband decomposition to
be applied on its bandpass images. Those bandpass images can
be fed into a DFB so that directional information can be well cap-
tured. Fig. 4 depicts this pyramidal directional filter bank (PDFB).
The scheme can be iterated repeatedly on the coarse image. The



end result is a decomposition into directional subbands at multiple
scales.
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Fig. 4. Pyramidal directional filter banks. (a) Block diagram. (b)
Frequency decomposition. Notice that as the scale is refined from
coarse to fine, the number of directions is doubled at every other
dyadic subband.

With perfect reconstructing LP and DFB, the PDFB is obvi-
ously PR, hence it is a frame operator for 2-D signals. The PDFB
has the same redundancy as the LP: up to 33% when subsampling
by two in each dimension. If the filters in the LP are orthogo-
nal partners (that is, h[n] = g[�n] and g[n] is orthogonal to
its translates with respect to the subsampling lattice), then LP is
shown to be a tight frame with energy conservation [8]. In that
case, assuming an image x is decomposed into J bandpass images
bj ; j = 1; 2; : : : ; J and a lowpass image aJ ,1 then we have

kxk2 =

JX
j=1

kbjk2 + kaJk2 : (7)

Now, in addition, we assume that the DFB is also orthogonal;
it decomposes each bandpass image bj into directional coefficients
dj with: kbjk2 = kdjk2. Then the decomposition by PDFB: x 7!
(d1; d2; : : : ; dJ ; aJ) also has the energy conservation property:

kxk2 =
JX

j=1

kdjk2 + kaJk2 : (8)

In other words, the PDFB is a tight frame when orthogonal
filters are used in LP and DFB. Tight frame is an important prop-
erty in some applications, for example, the error introduced in the
transform domain is the same as the error in the reconstructed sig-
nal.

Let us point out that there are other multiscale and directional
decompositions such as the cortex transform [9] and the steerable
pyramid [10]. Our PDFB differs with those in that it allows dif-
ferent number of directions at each scale while nearly achieving
critical sampling. In addition, we make the link to continuous-
time construction precise, both through a relation to curvelets, and
by studying convergence of iterated DFB’s.

4. CURVELET TRANSFORM USING PDFB

In a nutshell, the curvelet transform [2] is obtained by filtering and
then applying windowed ridgelet transform on each bandpass im-
age. In R2 , ridgelets are constant along ridge lines x1 cos(�) +
x2 sin(�) = const and are wavelets (with a scale s) along the or-
thogonal direction. In frequency domain, such a ridgelet function

1The index is such the level j = 1 corresponds to the finest scale.

is essentially localized in the corona j!j 2 [2s; 2s+1] and around
the angle �. The ridgelet transform is shown to provide a sparse
representation for smooth objects with straight edges.

The curvelet decomposition can be described in the following
steps [2]:

1. Subband decomposition of the object into a sequences of
subbands.

2. Windowing each subband into blocks of appropriate size,
depending on its center frequency.

3. Applying the ridgelet transform on those blocks.

The motivation for this is that by smooth windowing, segments
of smooth curves with would look straight in subimages, hence
they can be well captured by a local ridgelet transform. Subband
decomposition is used to keep the number of ridgelets at multi-
ple scales under control by the fact that ridgelets of a given scale
live in a certain subband. The window’s size and subband fre-
quency are coordinated so that curvelets have support obeying the
key anisotropy scaling relation for curves [2]:

width / length2: (9)

Now we will demonstrate that a PDFB where the number of
directions is double at every other finer scale in the pyramid (that
is, we apply a DFB with (n0 � bj=2c) levels to the bandpass im-
age bj of the LP) satisfies those key properties of curvelets. Thus
PDFB provides a filter bank approach for curvelet-like decompo-
sition.

A LP, which downsampling by two in each direction is taken
at every level, provides an octave-band decomposition: the LP
bandpass image bj at the level j serves subband [�2�j ; �2�j+1],
j = 1; 2; : : : ; J . Thus, in combining with directional decomposi-
tion of DFB, we obtain the frequency tiling for ridgelets as shown
in Fig. 4(b). Moreover, a coefficients from bj generates a basis im-
age that has local support in a square of size about 2j ; while basis
images from a DFB with (n0 � bj=2c) iterated levels has support
in a rectangle of length about 2n0�j=2 and width 1. Together, in
the PDFB, a basis image at the pyramid level j has:

width � 2j and length � 2j :2n0�j=2 = 2n02j=2; (10)

which satisfies the anisotropy scaling relation (9) of curvelets.
Fig.5 illustrates this property by displaying some basis im-

ages from a PDFB that implements the digital curvelet transform.
Those basis images have their widths contracted by half at every
finer scale, while their lengths are only contracted at every other
scale.

j = 1 j = 2 j = 3 j = 4

Fig. 5. Basis images from a PDFB that implements the curvelet
transform.

In [11], Starck et al. describe a different approach for the digi-
tal curvelet transform, in which they directly “discretizes” the con-
tinuum definition. Their implementation uses the discrete Radon
transform on image blocks, and thus the number of represented di-
rections, which equals the block size, is reduced by half for every
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Fig. 6. Example of PDFB. (a) Input image. (b) Magnitudes of
PDFB coefficients. (c) Reconstructed image from a PDFB sub-
band.

finer scale. This goes opposite against the curvelet construction
in continuous space, and is unlike our construction. Furthermore,
there is a redundancy factor equals to 16J + 1 in their implemen-
tation compared with 1:3 in ours.

5. EXPERIMENTS AND DISCUSSION

Fig. 6 shows an example image that is transformed by the PDFB.
To obtain visible directional selectivity, we use larger quincunx fil-
ters that are closer to the ideal case. As we can see, the coefficients
in the transform domain are very sparse – significant coefficients
are located around edges and in the right directional subbands.
With non-linear approximation using the PDFB, smooth regions
are represented efficiently by the small size lowpass image while
smooth edges are efficiently represented by a few directional local
coefficients.

The non-linear approximation power of PDFB is tested in de-
noising experiments and compared with the wavelet transform. In
both cases, simple hard thresholding is performed in the trans-
form domain. Fig. 7 displays a detail examination, where PDFB
is shown to be more effective in recovering edges, as well as in
signal-to-noise ratio (SNR).

For compression applications, there is the cost associated with
describing the retained coefficients and their locations that must
be taken into account. The success of wavelets in current image
compression algorithms partly relies on the existence of embed-
ded trees that effectively point to (in)significant coefficients in the
transform domain. In PDFB, from coarse to fine scale, resolution
increases in both position and direction. Thus, embedded trees
similar to the zero-tree wavelet can be used to successively locate
the position and direction of image edges. Furthermore, as smooth
edges have their tangent varies slowly, significant coefficients in
PDFB are localized in both position and direction.

Fig. 7. Denoising experiment: original image (top left), noisy im-
age (top right, SNR = 9.55 dB), denoising using 2-D wavelets (bot-
tom left, SNR = 13.82 dB), and denoising using PDFB (bottom
right, SNR = 15.42 dB).
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