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Abstract  

In this paper, the performance of chromatic adaptation 
transforms based on stable color ratios is investigated. It was 
found that for three different sets of reflectance data, their 
performance was not statistically different from 
CMCCAT2000, when applying the chromatic adaptation 
transforms to Lam’s corresponding color data set and using 
a perceptual error metric of CIE ∆E94. The sensors with the 
best color ratio stability are much sharper and more de-
correlated than the CMCCAT2000 sensors, corresponding 
better to sensor responses found in other psychovisual 
studies. The new sensors also closely match those used by 
the sharp adaptation transform. 
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Introduction 

For almost a century, photoreceptor or first-stage 
adaptation has been proposed as a mechanism for color 
constancy [1]. Color constancy refers to the invariance of 
the perceived color of a surface despite changes in the 
intensity and spectral composition of the light source. The 
human visual system is able to discriminate very reliably [2] 
and quickly [3] colored scenes where the spectral 
composition of the illuminant is changed from colored 
scenes where surface reflectance is changed. This ability 
might be based on a visual coding of spatial color relations 
within a scene. Specifically, the ratio of color excitations 
produced by light from different surfaces is retained and 
kept constant, rather than absolute excitation values. As a 
result, due to the multiplicative effect of the spectral power 
distribution of the light source on the color response of a 
surface reflectance, the illuminant cancels out. 

These ratios are determined within rather than between 
color classes. That such a model can explain at least 
partially the phenomenon of color constancy has been 
investigated and is illustrated in the literature. Dannemiller 
[4] studied the rank ordering of photon catches from natural 
objects illuminated with daylight and tungsten light for a 

model human fovea. He found that the observed rank 
orderings remained nearly stable across illuminant changes 
for all three cone classes. Foster and Nascimento [5] have 
shown that for a large class of pigmented surfaces and for 
surfaces with random spectral reflectances, color excitation 
ratios are statistically almost invariant under changes in 
illumination. The Retinex image processing model [6,7] uses 
sequential products relating each surface color to one or 
more bright surfaces, keeping the ratios constant, to produce 
preferred image reproductions. Brill and West [8] have used 
color ratios in theoretical studies to set constraints on 
illuminant and surface reflectance spectra for color 
constancy. 

Image capturing systems, such as scanners and digital 
cameras, do not have the ability to adapt to an illumination 
source like the human visual system. To faithfully reproduce 
the appearance of image colors, it follows that all image 
processing systems need to apply a transform that converts 
the input colors captured under the input illuminant to the 
corresponding output colors under the output illuminant. 
This can be achieved by using a chromatic adaptation 
transform (CAT). Basically, applying a chromatic 
adaptation transform to the tristimulus values of a color 
under one adapting light source predicts the corresponding 
color’s tristimulus values under another adapting light 
source. 

In this paper, we investigate if a chromatic adaptation 
transform based on stable color ratios performs as well as 
the newly published chromatic adaptation transform, 
CMCCAT2000 [9], which was derived by optimizing 
perceptual error (CIE ∆E) over sets of corresponding color 
data. We found that there is no statistical difference at the 95 
percent confidence level between CMCCAT2000 and the 
chromatic adaptation transforms resulting from the sensors 
that have best color ratio stability for Lam’s corresponding 
color data. 

This result is interesting when viewed in the context of 
theories of human color vision. It is often proposed (e.g. in 
the Retinex theory) that ratios play a key role in perception. 
The result here delivers sensor channels that optimize ratio 
stability. Moreover, our new result helps to explain why 
previous “physics based” adaptation transforms are quite 
different from those that are used in color science. Physics 
based transforms were designed to minimize absolute error 
of colors “observed” across illumination. As such, these 



 

 

sensors are insensitive to large relative error impinging on 
small sensor responses (these responses will have small 
absolute error). The results are sensors that are significantly 
more peaked than the CMCCAT sensors [10], which 
themselves are more peaked than the cones. However, the 
spectral sharpened sensors also have significant negative 
lobes, which CMCAT2000 sensors do not. These lobes turn 
out to be significant in the context of relative error (or ratio 
error). Indeed, to have stable color ratios across illuminants 
one should have no lobes or very shallow negative lobes. 

Summarizing this argument, if we assume that ratio 
stability is the rationale for adaptation transforms and that 
the human visual system optimizes for ratio stability, then 
we would expect an adaptation transform that is more 
peaked than the cones but that has minimal negative lobes. 

Chromatic Adaptation Transforms 

There are several chromatic adaptation transforms 
described in the literature, most based on the von Kries 
model [1]. CIE tristimulus values are linearly transformed 
by a 3x3 matrix MCAT to derive R’G’B’ responses under the 
first illuminant. The resulting R’G’B’ values are 
independently scaled to get R”G”B” responses under the 
second illuminant. The scaling coefficients are most often 
based on the illuminants’ white-point R’G’B’ and R”G”B” 
sensor values. If there are no non-linear coefficients, this 
transform can be expressed as a diagonal matrix. To obtain 
CIE tristimulus values (X”Y”Z”) under the second 
illuminant, the R”G”B” are then multiplied by (MCAT)-1, the 
inverse of matrix MCAT. Equation (1) describes a matrix 
formulation of this concept: 
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Quantities ''' ,, www BGR  and """ ,, www BGR  are computed 
from the tristimulus values of the first and second 
illuminants, respectively, by multiplying the corresponding 
XYZ vectors by MCAT.  

The currently most popular chromatic adaptation 
transforms are the von Kries CAT operating on cone 
responses, derived by the Hunt-Pointer-Estevez (HPE) linear 
transform from XYZ color matching functions to relative 
LMS [11]; the linearized Bradford CAT [12,13]; the Sharp 
CAT [14]; and the CMCCAT2000 transform [9]. All are 
based on the von Kries model as described in equation (1), 
but they apply the white-point scaling to different RGB 
sensors (see Figure 1), i.e. they use different transformation 
matrices MCAT. 

CMCCAT2000 has been developed to supersede 
CMCCAT97. CMCCAT97 is a chromatic adaptation 
transform included in the CIECAM97s color appearance 
model. It is based on the Bradford transform [12], but 
includes a step to model partial adaptation [15]. 

CMCCAT2000 was developed by optimizing the 
transformation matrix MCAT so that the perceptual error of 
predicted and actual corresponding colors for a number of 
corresponding color data sets [16] is minimized. The non-
linear correction in the blue of the original Bradford CAT 
has been omitted to facilitate a reverse transform. It also 
calculates the degree of adaptation D differently than the 
previous version. In this paper, the transformation matrix of 
CMCCAT2000 is used with the chromatic adaptation model 
described in equation (1), and the degree of adaptation is not 
considered.   
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Figure 1: von Kries, Bradford, Sharp and CMCCAT2000 sensors. 

Experiment 

The experiment consisted of finding the best RGB 
sensors that result in minimal ratio error between sensor 
responses of a given set of reflectance data over a range of 
illuminants.  The experiment was done individually for each 
of the three sensors, under the assumption that ratio stability 
within one photoreceptor response is independent from the 
other two.  

The “color” or sensor response X for any given 
reflectance under any illuminant with any sensor can be 
calculated as follows:  
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where R is the reflectance factor at a given wavelength, 
E is the spectral power distribution of the illuminant, and S 
is the sensor’s sensitivity at that wavelength. Using matrix 
notation, the color xi for a reflectance vector ri  (31x1) is 
given by the inner product of the reflectance times 
illuminant SPD and the sensor sensitivity: 

ser T
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where e (31x1) and s (31x1) are the illuminants spectral 
power distribution and the sensor sensitivity vector, 



 

 

respectively, and (× ) denotes an element by element 
multiplication. The length of the vectors (31) refers to the 
sampling of the visual spectrum, in our case from 400 to 700 
nm at 10 nm intervals. 

Let x be a (mx1) vector containing the colors for a set 
of m reflectances under the main illuminant with a given 
sensor. The vector of color ratios a is calculated as follows: 

jiji
j

i

j

i xxxx
x
x

x
x

≠∈∀











=

+

,,;;...;
1

xa  (4) 

If ae is a ratio vector of the same set of reflectances 
under a different illuminant, then the total ratio error ε is 
given by: 
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where n is the number of illuminants tested other than 
the main illuminant. By minimizing ε, we find the optimal 
sensor sopt that keeps color ratios most stable: 
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The initial sensor set S was determined individually for 
each color response (R, G, and B) using a spherical 
sampling technique as described in [17], with the constraint 
that the sensors are within 30 degrees of the Bradford, 
CMCCAT, and Sharp sensors. Using no constraint, the 
solution (or optimal sensor) for all three color responses 
would converge to the blue optimal sensor. The color 
responses x were calculated for seven different illuminants, 
the main illuminant D65, and six other illuminants: A, D45, 
D55, D75, D85, and D100. Three different reflectance data 
sets were used, the Macbeth Color Checker patches (24 
reflectances), the Munsell chips (462 reflectances), and 
Dupont pigments (120 reflectances). The best sensors were 
derived for each color response and reflectance data set 
individually. Additionally, an unconstrained non-linear 
least-squares regression was applied to find a local minimum 
around the best sensors found through spherical sampling. 
The resulting sensors sopt that keep color ratios over changes 
in illuminants most constant are illustrated in Figure 2. 

Now that we have derived sensors that optimize ratio 
stability, we wish to evaluate their appropriateness for 
accounting for corresponding color data. A priori, we might 
expect them to be somewhat appropriate since if ratios, with 
respect to the derived sensors, were perfectly stable, then 
this would provide evidence that theoretically a chromatic 
adaptation transform might perfectly discount illumination 
[5]. In order to evaluate the optimally stable ratio sensors in 
the context of chromatic adaptation, we calculated the linear 
transform mapping XYZs to the ratio stable color responses. 
We can think of this transform as a chromatic adaptation 
transform and simply insert it into equation 1. 
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Figure 2: The sensors sopt  found by minimizing color ratio errors 
for the Macbeth, Munsell and Dupont reflectance data sets. For 

comparison, the CMCCAT2000 sensors are also plotted. 

We now applied this new “chromatic adaptation 
transform” to Lam's corresponding color data set. Lam had 
observers predict the appearance of 58 wool samples under 
illuminants A and D65. The resulting corresponding color 
data set has been used extensively to test chromatic 
adaptation transforms and has been found to be quite stable 
[9].  

The predicted and actual X”Y”Z” values were 
converted to CIE Lab, so that the perceptual prediction error 
(CIE ∆E94) could be considered. One-tail student t-tests for 
matched pairs [14,18] were calculated to evaluate if the 
CATs are statistically different from the CMCCAT2000 
transform. The results are summarized in Table 1. 

Table 1: Mean CIE ∆E94 values for Lam’s data set, and 
probability (p) values resulting from the t-test evaluation. 

 Mean CIE ∆∆∆∆E94 p -value 
CMCCAT2000 3.03  
Macbeth 3.29 0.06 
Munsell 3.20 0.13 
Dupont 3.23 0.09 

 
At the 95 % confidence level, the ratio optimal sensors 

deliver the same chromatic adaptation performance as the 
CMCCAT 2000 sensors. However, the ratio optimal sensors 
are significantly more peaked than CMCAT 2000 and this 
better reflects sensors found in other psychophysical 
experiments. Indeed, so-called sharp sensors derived in [14] 
were shown to deliver as good of a performance as 
CMCCAT2000 over many corresponding color data sets. 
The new ratio optimal sensors are close to sharp sensors. 

Perhaps more importantly, we now have a match 
between minimizing a physical variable and sensors derived 
through psychophysical means. If we wish to have ratio 
stability, then we would expect to derive a sharp adaptation 
transform. 



 

 

Conclusions 

There is no statistical difference at the 95 percent 
confidence level between CMCCAT2000 and the chromatic 
adaptation transforms resulting from the sensors that have 
best color ratio stability. In effect, the different chromatic 
adaptation transforms will perform equally well. However, 
as can be seen from Figure 2, the sensors with stable color-
ratios are much “sharper,” i.e. more de-correlated, than the 
CMCCAT2000 sensors, which were obtained by optimizing 
MCAT over sets of corresponding color data. 

The von Kries adaptation model alone cannot totally 
predict color constancy [4,19]. Therefore, any chromatic 
adaptation transform based on such a model will result in 
some error. Additionally, the corresponding color data sets 
all have some inherent experimental error. Lam calculated 
that his corresponding colors have a standard error of 
approximately 2 ∆E [1]. It is therefore possible that there are 
a number of sensors that will perform equally well using the 
von Kries adaptation model and tested on corresponding 
color data sets, as was shown in [17].  

However, the appearance of the CMCCAT2000 sensors 
is, to our knowledge, unique, while sharp sensors have been 
found in psychophysical experiments [20,21,22,23]. It is 
therefore plausible that the sensors found by keeping color 
ratios stable are closer to the “real” sensors used by the 
human visual system to perform adaptation than the 
CMCCAT2000 sensors. 
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