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Abstract. We propose a novel wavelet based modeling technique for 2D+1 textures, i.e.
static textures shot by a moving camera.  The correct perception of motion is preserved
by keeping unchanged the the tempora correlation between subsequent images, or frames.
Globa motion estimation is used to determine the movement of the camera and to identify
the overlapping region between two successive texture images. Such an information is then
exploited for the generation of thetexture movies. The proposed method for synthesizing 2D+1
textures is able to emulate any piece-wise linear trgjectory and is real-time on PI1| processors.

1. Introduction

Dynamic textures are usually meant as multi-dimensional stochastic processes exhibiting
some stationarity over time [1]. Some examples are smoke, waves and foliage. This can
be regarded as a generalization of the bi-dimensional case, where temporal evolution is a
feature of the global stochastic process [1, 2].

The novelty of our contribution is that we address the problem of modeling a different
class of dynamic textures, for which the motion is not an intrinsic property of the considered
process, but the result of a continuous change of the viewpoint. We aim at modeling the
motion features as perceived by a moving observer. To make the distinction with respect
of the 3D dynamic processes mentioned above, we call the considered class 2D+1 Texture
Movies (TM). In this case, the key point is the preservation of the temporal correlation between
subsequent images, or frames. We consider here the case of a static texture - the grass - shot
by a moving camera, and generalize the DWT based Multiresolution Probabilistic Texture
Modeling (MPTM) technique [3] to such a dynamic texture. Probabilistic modeling of static
textures aims at generating a new image from a sample texture, such that it is sufficiently
different from the original yet appears to be generated by the same underlying stochastic
process. The goal of the proposed algorithm is to generalize such an idea to the generation
of a progressively “growing” texture, where the direction and speed of growth is given a-
priori by a predefined motion model. More specifically, we focus here on piece-wise linear
trajectories. In this case, the main issue is the preservation of the perception of motion,
namely the preservation of those visual features. Noteworthy, the trivial juxtaposition of
temporally subsequent patches respectively sampled from successive frames is not a solution.
The aliasing phenomena due to the sampling as well as the mismatch between the sampling
grids associated to two successive frames would result in a discontinuity along the boundary.

This paper is organized as follows. Sec. 2 describes the 2D+1 texture model. Sec. 3
illustrates the movement-simulating algorithm. Results are discussed in Sec. 4 and Sec. 5
derives conclusions.

2. Modeling 2D+1 texture movies

Let Q be the infinite lattice, and let Q, be the domain which is observed at time t, i.e. the
spatial support associated with the observation at a given instant in time. Let then 1(Q;) be

the observation at time t and 1(Q;) be the synthetic counterpart. Clearly:
QCQ Vit 1)
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Accordingly, Qtl and Qt2 denote the domains covered by the observations at times t; and t,,

respectively. The specificity of the proposed approach is that it provides a solution to the
following problem: Given two sub-lattices Qtl and Qt2 such that:

Q NQ, =Qy #0, (2

generate a synthetic texture over Qt2 by growing it from the seed already present on Q,, such

that the impression of visual continuity is preserved.

If the two sets were disjoint, then the independent generation of the texture over the two
domains would have been adequate. Conversely, where there is an overlap between the two
domains, the independent generation of the texture would produce an apparent edge at the
boundary or, equivalently, a flickering on the representation as a temporal sequence which
destrays the continuity of the visual flow.

The key feature of the proposed model is the ability to synthesize a textures f(Qtz) over

the domain Qt2 by growing the texture over Q,, = QtZ\QAt but keeping unchanged the texture
already present over Q, and avoiding discontinuities along the boundary. The previous
discussion holds unchanged also when the observations are themselves realizations of the

stochastic process represented by the considered model for static textures. In this case, the
following relation holds:

|~(Qt+m) =1(Q) & 1(Qy) (3)

where f(Qt+At) is the synthetic texture simulating the observation at time t + At, f(QAt) is the

texture seed, and the operator @ indicates the juxtaposition of the textures stated. The spatial
position of Q. », can be easily recovered from the underlying motion model. Let x,y € R be

the spatial coordinates of the upper left corner of Q; and let h and w, with h,w € R, be the
height, respectively the width, of the spatial domain Q;, assumed to be of rectangular shape.
Given the estimated speed ¥ = (v, Vy) at which the viewpoint moves, it is straightforward to
derive the position of the domain Q,__,, concerned by the observation at time t + At as the one
whose upper left corner has coordinates:

X+ AX = X+ vy - At 4
y+Ay =y+vy-At 4)

Therefore, one can easily identify Q,, and Q.

3. Generalizingthe DTW-MPTM to 2D+1 textures

The proposed method is s generalization of the DWT-MPTM to 2D+1 textures. It consists in
synthesizing a texture area larger than the video frame size, preserving the texture over Q

while generating a limited amount of new texture, only when necessary, to cover Q , avoiding
discontinuities. It is worth pointing out that the straightforward solution of synthesizing each
frame independently with the DWT-MPTM is not suitable because it creates a disjointed
succession of rapid texture changes that fails to generate an impression of movement. One
also quickly comes to the conclusion that a cut-and-paste approach at image level, in which the
common section is correctly displaced and remaining empty parts of the frame are filled with
newly synthesized patches of texture, creates unacceptable discontinuities. Another trivial
solution would be to synthesize a much larger texture area than the frame size and to select
the covered domain to be part of the frame according to the camera movement. This method is
however suffers of some shortcomings. First, the required size of the synthetic texture should
be Ifjncéwn a-priori. Moreover, large amounts of texture could be produced without ever being
needed.

A way to answer those concerns is to work in feature space. Although the DWT used
for compression purposes is in general not shift-covariant, covariance properties hold for
translations in transform space which correspond to translations at image level that can be

broken down in horizontal and vertical shifts of k- 2N and h- 2N pixels, respectively, where
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Figure 1. Simulation of movement. The size of Sis bigger than that of the original. When the
added border is not enough to simulate the required movement, ashifted version of Siscreated.

The window of visibility isthen moved inside S(k_h) to reproduce the correct movement.

k,h € Z and N is the number of decomposition levels of the DWT. Working in feature space,
we are consequently able to generate from a synthetic image S the following set:

M= {S(k’h),k,he Z|S(k’h) = T(k’h)S} 5)

where T(Kh) is the translation operator that applied to S produces a shift of k- 2N and h- 2N units
in the horizontal and vertical directions, respectively. As the translation from S to S(kJ) takes
in fact place in feature space, the remaining empty parts of S(k,l) can be filled by applying

the DWT-MPTM algorithm locally without creating discontinuities. Any random translation

can be obtained by extending the size of S so as to add to it a border of 2N pixels on all
sides. Accordingly, simulating a random translation is a two-step process: obtaining the
correct S(k )’ selecting the correct area of S(k h) which corresponds to the video frame. An

example is shown in fig. 1. Let p and g, with p,q € {0,2- 2N} be the width in pixels of the
border zone respectively in the horizontal and vertical direction of movement. To generate a
horizontal, respectively vertical, movement of m, respectively n, pixels at image level, with
m > p corresponding to Ax and n > ¢ corresponding to Ay in Sec. 2, the correct S(k ) is chosen

so that:

k= min{(p-+k-2") >m} (6)
h= mﬁin{<q+ﬁ-2N) >n} (7)
The window of visibility is then correctly positioned inside S(k7h), namely:
new_p=p+k-28—m )
new.q=q+h-2N—n ©)

4. Results and Discussion

The performance of the proposed system has been evaluated in terms of preservation of the
perceptual features. Before tackling this subject, it is important to mention that despite
the great amount of research devoted to the identification of the perceptual features which
determine texture perception, the problem is still unsolved. Two main guidelines can be
identified. The first is based on the assumption that there exists a set of statistics which
is necessary and sufficient to identify a texture class. Under such an hypothesis, a pair of
textures sharing those statistics are perceptually equivalent [4, 8]. The problem is faced in
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an information theoretic manner, and leads to the definition of models based on statistical
parameters. The way such parameters map to the hypothesized necessary and sufficient set is
still unknown. The second consists in looking at the problem in a different perspective and
aims at identifying and characterizing the visual mechanisms which are responsible for texture
perception (referring to particular tasks like analysis and discrimination) on a psychophysical
or, more in general, neuro-physiological basis [5, 6, 7]. The focus is on the local parameters
that are relevant for the analysis of the visual stimulus with regard to the considered task, as
opposed to the analysis by synthesis approach followed in the other case. The problem is
very complex and further investigation is needed to understand and model the involved visual
processes. In this contribution, we do not put forward a general theory for texture perception
neither a golden rule for the evaluation of a modeling technique. In our opinion, the visual
mechanisms which subserve these phenomena need to be investigated further before being
able to formulate a general theory. Instead, we have focused on a particular case - driven by
an application - and we have faced it in an empirical way leading to what can be considered
a “first order” solution. The identification of the features which determine the classification
of the texture as belonging to a given class as well as the impression of motion will be an
essential part of our future research.

The evaluation of the ability of any texture model, either static or dynamic, to reproduce
the perceptual features of the original texture implies ad-hoc subjective tests respecting the
paradigm set by psychophysics. However, as mentioned above, such a task was beyond the
scope of this contribution. Nevertheless, some informal subjective tests involving non trained
people of the laboratory revealed that the majority of the subjects were not able to distinguish
between the original and synthetic samples.

5. Conclusion

We propose a novel generative model for 2D+1 textures, suitable for model-based coding of
video. The integration of the motion information within the DWT-MPTM algorithm for static
textures results in an dynamic generative model able to synthesize any 2D+1 texture movie
with any piece-wise linear trajectory. A texture seed is extracted from a frame of the original
sequence and is used as model for synthesizing the other frames. The motion vector field is
estimated at any frame and is used to constrain the generating process such that the correct
temporal correlation between the images is preserved. Among the issues deserving further
investigation are the emulation of other camera functions like zooming and rotation as well as
the rendering of perspective.
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