CONTOURLETS: A DIRECTIONAL MULTIRESOLUTION IMAGE REPRESENTATION
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ABSTRACT

We propose a new scheme, named contourlet, that provides a flex-
ible multiresolution, local and directional image expansion. The
contourlet transform is realized efficiently via a double iterated fil-
ter bank structure. Furthermore, it can be designed to satisfy the
anisotropy scaling relation for curves, and thus offers a fast and
structured curvelet-like decomposition, As a result, the contourlet
transform provides a sparse representation for two-dimensional
piecewise smooth signals resembling images. Finally, we show
some numerical experiments demonstrating the potential of con-
tourlets in several image processing tasks.

1. INTRODUCTION

Sparse signal expansion lies at the foundation of many signal pro-
cessing tasks, including compression, filtering, and feature extrac-
tion. We are interested in the construction of sparse expansions for
two-dimensional signals which are smooth away from discontinu-
ities across smooth curves. Such signals resemble natural images
where discontinuities are generated by edges - referred to points
in the image with sharp contrast in the intensity, whereas edges are
often gathered along smooth contours that are created by typically
smooth boundaries of physical objects.

Far one-dimensional piecewise smooth signals, wavelets pro-
vide the right tool. However, in 2-D the commonly used separable
wavelets obtained by a tensor-product of 1-D wavelets are only
good at capturing the discontinuities at edge points, but do not see
the smoothness along contours. Thus, more powerful schemes are
needed in higher dimensions.

Recently, Candés and Doncho [1] pioneered a new signal ex-
pansion, named curvelet, that offers a sparse expansion for 2-D
plecewise smooth functions in R where the discontinuity curves
are smooth. The original construction of the curvelet transform [1]
was intended for functicns defined in the contimsum space R®, The
development of discrete versions of the curvelet transform that can
be applied to sampled images was a challenge, especially when
critical sampling is desirable,

In this paper, first we identify the key features that lead to an
improvement of curvelets over wavelets in representing 2-D piece-
wise smooth signals with smooth discontinuity curves. Based on
this, we construct a new filter bank structure that can deal effec-
tively with piecewise smooth images with smooth contours. The
resulting image expansion is a frame composed of contour seg-
ments, and thus is named contourfet. Like wavelets, contourlets
have a seamless translation between the continuous and the dis-
crete worlds via a multiresolution analysis framework and iterated
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filter banks. Finally, we show some numerical experiments com-
paring wavelets and contourlets.

2. REPRESENTING 2-D PIECEWISE SMOOTH SIGNALS

Consider the wavelet transform of a 2-D piecewise functions with
a smooth discontinuity curve (Fig. 1(a}}. Due to the separable
construction, 2-D wavelet basis functions have supports on dyadic
squares. Consequently, wavelets are good at isolating discontinu-
ity points as only wavelets whose supports overlap with the dis-
continuity curve generate significant coefficients. However, they
are blind to the smoothness of this curve and it is easy to see that
there are (27} significant wavelet coefficients at the scale 277,
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Fig. 1. Non-linear approximation of a 2-D piecewise smooth sig-
nals where the thick lines represent the discontinuity curves sepa-
rating two smooth regions. Curvelet basis functions can be viewed
as a local grouping of wavelet basis functions into linear structures
50 that they can capture the smooth discontinuity curve more effi-
ciently.

How can we improve the performance of the wavelet scheme
when the discentinuity curve is known to be smoath? Simply look-
ing at the wavelet transform in Fig. 1(a} suggests that rather than
treating each significant wavelet coefficient along the discontinu-
ity curve independently, we can group the nearby coefficients as
their locations are locally correlated. The curve scaling relation
hints that we can group about a27/2 nearby wavelet basis func-
tions at the scale 2~ into one basis function with a linear structure
so that its width is proportional to its length squared, as shown in
Fig. 1(b). This grouping operation reduces the number of signif-
icant coefficients at the scale 277 from 0O(27) to 0(27/2). Con-
sequently, such a new expansion is superior compared with the
wavelet transform in approximating this type of 2-D piecewise
smooth functions. This is the underlying reason for the success
of the curvelet transform [1].
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Fig. 2. Two approaches for dealing with piecewise smocth images. {a) Curvelet construction: block ridgelet transforms are applied to
subband images. (b) Contourlet construction: image is decomposed by a double filter bank structure, where the first one captures the edge

points and the secend one link these edge points into contour segments.

To sum up, in order to provide sparse expansions for piecewise
smooth images with smooth contours, in addition to localization
and multiresolution features, new 2-I) schemes should contain ba-
sis functions with elongated shapes with different aspect rations
and oriented at variety of directions,

3. CONTOURLET CONSTRUCTION

The eurvelet transform [1] achieves the aforementioned desiderata
via filtering and then applying a block ridgelet transform on each
bandpass image (see Fig. 2(a)). However, this construction poses
several problems when one translates it into the discrete world.
First, since it is a block-based transform, either the approximated
images have blocking effects or we have to use overlapping win-
dows and thus increase the redundancy. Secondly, the use of the
ridgelet transform, which is defined on a polar coordinate, makes
the implementation of the curvelet transform for discrete images
on a rectangular coordinate to be very challenging. In [2, 3], differ-
ent interpolation approaches were proposed to sclve the polar ver-
sus rectangular coordinate transform problem, all requiring over-
complete systems. For example, the discrete implementation of the
curvelet transform in [3] has a redundancy factor equal to 16 + 1,
where J is the number of multiscale levels. This impose a serve
limitation on curvelets in certain applications, such as compres-
sion.

The grouping of wavelet coefficients argument in the last sec-
tion suggests that we can obtain a sparse image expansion by first
applying a multiscale transform and then applying a local direc-
tional transform to gather the nearby basis functions at the same
scale into linear structures. In essence, we use first a wavelet-like
transform for edge (points) detection, and then a local directional
transform for contfour segments detection. This approach is simi-
lar to the popular Hough transform for line detection in computer
vision,

With this insight, we construct a double filter bank structure
{Fig. 2(b}} in which at first the Laplacian pyramid {LP} [4] is used
to capture the point discontinuities, and followed by a directional
filter bank (DFB) {5] to link point discontinuities into linear struc-
tures. The overall result is an image expansion with basis images
as contour segments, and thus it is named the contouriet transform.

The details of the proposed double filter bank, named pyramidai
directional filter barnk (PDFB), and its properties are given in [6].

Next, we sketch briefly the continuous-domain expansion gen-
erated by the contourlet construction and refer to [7] for details.
Associated with the Laplacian pyramid is a multiscale decomposi-
tion of the L*(IR*) space into a series of increasing resolution

LHR*) =V, ® (GB W,) {1

F=jo

with the usual definition of the subspaces V3, and W; as in the
wavelet multiresolution analysis [8] (Sec 7.1): Vj, is an approxi-
mation subspace at the scale 27¢, whereas W; contains the “added
details” to the finer scale 2/=1. In the LP, each subspace W; is
spanned by a frame { ,uJ,n(t)}nEz, that assimilates a uniform gnd
on R? of intervals 2771 x 2771

For the directional filter bank. it can be shown that an {-level
DFB generates a local directional basis for 2(Z?) that is composed
of the impulse responses of the 2' directional filters and their shifts:

{1 - sml} : @

0<k<2t, nez?

where the sampling matrices have the following two forms, de-
pending on whether the representing direction is “nearly horizen-
tal” or “nearly vertical”:

2[—1
0 o 0< k<2t
s = (3)

(2) 231 2tk <2l

In the contourlet transform, suppose that an !;-levels DFB is
applied to the detail subs;l)ace W; of the LP. This results in a de-
composition of W into 2% directional subspaces at scale 27:

2% -1

@ W(f i) (4)
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Each subspace WJ“,: ) is spanned by a frame { pgti)n (£) } ez
with a redundancy ratio equal to 4/3, where

L () i)
ARa® = 3 gl m = S{n) s m(®)
me2d

Furthermore, we can show that { pﬁ'j:)n (t)} cz2 is generated
n
fram a single prototype function and its shifts as

A0 = 0P (e~ 275 n), forall n € 27

—_—

5)

Asaresult, the WJ-(f,{) is a shift invariant space which is defined
on a rectangular grid of interval 2775 =2 x 27 {or 27 x 27+ =2, de-
pending on the representing direction is nearly horizontal or nearly
vertical), We refer to functions pgfi?" (t) as contourlets. The in-
dexes 3, k, and n are for the scale, direction, and location, respec-
tively. Fig. 3 illustrates the subspaces and embedded grids of the
contourlet expansior.
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Fig. 3. (2) Multiscale and multidirectional subspaces generated by
lhel contourlet construction. (b} Embedded grid of the subspace
Wi k-

In general, the contourlet construction allows for any number
of DFB decomposition levels I; to be applied at each LP level
7. For the contourlet transform to satisfy the anisotropy scaling
relation as in the curvelet transform, we simply need to impose
that in the PDFB, the number of directions is doubled at every
other finer scale of the pyramid. Fig. 4 graphically depicts the
supports of the basis functions generated by such a PDFB. As can
be seen from the two shown pyramidal levels, the support size of
the LP is reduced by four times while the number of directions of
the DFB is doubled. Combine these two steps, the support size
of the PDFB basis functions are changed from one level to next
in accordance with the curve scaling relation. In this contourlet
scheme, each generation doubles the spatial resolution as well as
the angular resolution.

4. NUMERICAL EXPERIMENTS

We now present several non-linear approximation experiments
with the contourlet transform and compare it with the performance
of a 2-D separable wavelet transform. In these NLA experiments,
for a given value M, we select the M -most significant coefficients
in each transform domain, and then evaluate the reconstructed im-
ages from these sets of Af coefficients. The wavelet transform

LP DFB PDFB
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Fig. 4. Tllustration of the supports for the contourlets implemented
by a PDFB that satisfies the anisotropy scaling relation. From the
upper line to the lower line, the scale is reduced by four while the
number of directions is doubled.

used in the experiments is a biorthogonal transform with the “9-77
filters and € decomposition levels. The contourlet transform also
uses the “9-7" filters in the LP stage, while the DFB stage uses the
"23-45" biorthogonal quincunx filters designed by Phoong et al.
{9]. The number of decomposition levels by the DFB at the finest
pyramidal scale is 5, which leads to 32 directions.

Note that with this setup, both the wavelet and the con-
tourlet transforms share the same multiscale detailed subspaces
W;, which are generated by the “9-7" filters. The difference is
that in the wavelet transform, each subspace W is represented by
a basis with three directions, whereas in the contourlet transform
it is represented by a frame with many more directions. Since the
two transforms share the same detailed subspaces, it is possible to
restrict the comparison in these subspaces. We expect most of the
refinement actions would happen around the image edges.

Fig. 5 and Fig. 6 show the sequences of non-linear approxi-
mated images at the finest subspace W; using the wavelet and the
contourlet transforms, respectively, where the input is the “Pep-
pers” image. We observe that the wavelet scheme slowly refines
the detailed image by isolated “dots™ along the contours, while the
contourlet scheme quickly refines by well-adapted “sketches”. The
improvement by the contourlet scheme can be seen both in terms
of visual quality and the reconstruction error.

Finally, Fig. 7 shows a detailed comparison of two non-linear
approximated images by the wavelet and contourlet transforms.
We see that contourlets are superior compared with wavelets in
capturing fine contours (directional textures on cloths}.

5. CONCLUSION

In this work we constructed a discrete transform that can offers a
sparse representation for piecewise smooth images. We first iden-
tified two extra features that could lead to an improvement over
the wavelet scheme, namely directionality and anisotropy. From
this, we proposed a new filter bank structure, the pyramidal di-
rectional filter bank (PDFB), that can provide a multiscale and di-
rectional decomposition for images with a small redundancy fac-
tor. The PDFB provides a frame expansion for images with frame
elements like contour segments, and thus is also called the con-
tourlet transform. The contourlet frame has small redundancy that
is at most 4/3. The connection between the developed discrete
and continuous-domain constructions was made precisely via a
new directional multiresolution analysis, which provides succes-
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M =2, M5E = 1.708-04 M= 4, MSE = 1.702-04

M =8, MSE = 1.698-04

M= 16, MSE = 1.67e-04 M =32, MSE = 1.65¢-04 M = 64, MSE = 1.61a-04

M = 128, MSE = 1.548-04 M = 256, MSE = 1.45e-04 M= 512, MSE = 1.33e-(4

Fig. 5. Sequence of images showing the non-linear approximation
at the finest scale of the wavelet transform. M is the number of the
most significant coefficients; MSE is the mean square error against
the projection of the input image into the finest detailed subspace.
The input is the “Peppers” image.

M= 2 MSE = 16304 M =4, MSE = 1.69¢-04 M =B, MSE = 1.676-04

M = 16, MSE = 1.64¢-04 M =32 MSE =1.61e-04

Fig. 6. Same as in Fig. 5 but with the contourlet transform. Note
that the contourlet transform shares the same detailed subspace
with the wavelet transform.

sive refinements at both spatial and directional resolutions. The

(a) Wavelet: PSNR = 24.34 dB (b) Contourtet: PSNR = 25.70 dB

Fig. 7. Detail of non-linear approximated images by the wavelet
and contourlet transforms. In each case, the image originally of
size 512 x 512 is reconstructed from the 4096-most significant
coefficients in the transform domain.

contourlet transform can be designed to satisfy the anisotropy scal-
ing relation for curves like the curvelet transform. Experiments
with real images indicate the potential of the contourlets in image
processing applications.
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