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Abstract— The Karhunen-Logve transform is a key element of
many signal processing tasks, including classification and com-
pression. In this paper, we consider distributed signal process-
ing scenarios with limited communication between correlated
sources, and we investigate a distributed Karhunen-Lo&ve trans-
form (KLT}, In particular, a partial KLT (where only a subset of
sources are gbserved) and a conditional KLT (where some sources
act as side information) are posed and solved in a rate-distortion
sense. The partial KLT leads to an original bit allocation problem,
while the conditional KLT leads to a Wyner Ziv solution which is
separable at the sources.

These two cases can be seen as extreme cases of a distributed
KLT.

1. INTRODUCTION

ANY of the crucial contemporary applications involve

distributed signal processing and communication. Con-
sider for example a scene filmed by multiple cameras. Clearly,
the signals are correlated. If they are processed together, stan-
dard means such as the KLT can be employed. Suppose how-
ever that commmunication is expensive, and hence, that the signal
processing must be done in a distributed fashion separately at
every camera. In this paper, we show how the concept of the
KLT extends to such a distributed scenario. For a staie of the
art of the key results on the KLT, we refer to the excellent ex-
position in [1}. For the importance of distributed source coding
and results on distributed compression, we refer to [2].

It is thus natural to pose the following questions:

Given a correlated source vector (e.g. a jointly Gaussian vec-
tor) where individual entries are observed in distinct physical
locations and communication is a bottleneck, what are appro-
priate distributed source compression schemes.

Given that in the non-distributed case, the KLT is often the
answer, it is natural to see to what extent there exists a dis-
tributed equivalent.

A first version of the problem appears if only some of the
sources are observed, but all of them need to be reconstructed.
We term this the partial KLT problem. In Section II, we give a
solution to this problem, showing that it leads to an original rate
allocation problem. Note that this solution can also be nsed to
decide how many and which sources need to be observed, given
a certain rate. .

A second version of the problem appears when certain
sources are available at the receiver, a problem we call the con-
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ditional KLT, for which the solution is presented in Section
HL. It is shown that the problem splits into separate Wyner-Ziv
problems after taking a KLT that makes the observed entries in-
dependent, conditionally on the side information. This is shown
to be optimal.

In Section IV, we outline the implication of the above results

‘on a fully distributed KLT (of which the two previous cases

are extreme points). This problem is similar to multiterminal
lossy source coding, which is an open problem, and we conjec-
ture that using partial and conditional KLT’s achieves the best
known performance.

II. THE PARTIAL KLT

In this section, we study the problem of partial observation
or subsampling, depicted in Figure 1: There are N correlated
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Fig. 1. Compression of a subsampled set of correlated random variables.

sources of which only A are sampled. We consider the vector
X of N random variables,

x %

(XISXE,--‘aXJ’\')a (13
with zero mean and covariance matrix £.! We get to sample
only M of these. Without loss of generality, we assume that
the first M random variables are sampled, and we denote their

vector by

def

XS = (X11X29"-17XM)7 (2)

1 Throughout the present paper, we assume that T has full rank.
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with covariance matrix g, and the vector of non-sampled ran-
dom variables by

de

Xs. (Xar41. Xaz0,..., XN). (3)

The presence of the hidden part X g« — not observed, but to be
reconstructed — alters the problem significantly. Two points of
view are of particular interest 1o us:

1) Approximation.  The Af-dimensional vector Xg of
correlated random vartables is approximated in a k-
dimensional space.  What is the best such space? If
there is no hidden part (Af = N), the best choice is
well known (o be the eigenvectors corresponding to the
k largest eigenvalues of £g. But if there is a hidden part
(M < N), itis not optimal simply to 1ake the & largest
eigenvalues of ¥ since the non-sampled part may de-
pend crucially on some of the smaller cigenvalues. In this
section, we determine the optimal k-dimensional space.

2) Compression. The M-dimensional vector Xg of corre-
lated random variables is compressed using a total of
R bils. What is the optimal compression for a decoder

- that wants to minimize the distortion E||X — X2 =
E}L] E|Xy — Xx|?? For the compression problem, our
considerations are limited to the case where X is a vector
of jointly Gaussian random variables. If there is no hid-
den part (Af = ), the best compression is well known:
apply the Karhunen-Loé&ve transform (KET). This gives
M independent random variables that can be compressed
separately from one another. The bits are divided up ac-
cording to “water-filling”: the stronger components re-
ceive more, the weaker less. But if there is a hidden part
(A < N}, this is no longer optimal: some otherwise
unimportant part of X g may be vital for Xg.. In this sec-
tion, we show that the solution is still given by the KLT,
but that the bit allocation has to be modified.

The main tool of this section is the parrial KLT:

Definition 1: The partial KLT of X is the KLT of its sampled

part Xg. It is denoted by P.

The transformed version of Xg is denoted by Y5 = PXg,

and ¢? = Var(Y?).

Properties of the partial KLT.

1} Orthogonal transform

2) The components of Yy are uncorrelated. If Xg is a vec-
tor of jointly Gaussian random variables, then they are
independent.

The discussion of this section is limited to the case where X g

and Xg- are related by

Xse = AXg+V, 4)
where A is a constant mauix, and V is a random vector inde-
pendent of Xg.

1) Approximation Problem: The goal is to minimize the esti-

mation error E[|X — X||2. The key step is to rewrite this using

the partial KLT:
E|lX - X|?
© EBlXxs — Xs|l? + ElJAXs — AXs|i2 + B|[V]|?

b - -
© E\lvs ~ V5|2 + E||AYs — AVs)i2 + E||V!2

At
9 S 1+ a)ElYs - Ts? + EIVIP,
=1

(5)

where (a) follows from standard arguments about the minimum
mean-squared error (details see [3]), (b) follows from Property
1) of the partial KLT, and (c¢) from Property 2), and where

a = Y |(APTHuP, 6)
7

i.e. @; is the sum of the squares of column i of the matrix AP~ 1.

Theorem 1: The best k-dimensicnal approximation space
for the subsampling problem of Figure 1 is composed of the
k eigenvectors corresponding to the % largest modified eigen-
values (1 + a;)o?.

2) Compression Problem: The discussion of the compression
problem is limited to the case where X is a vector of jointly
Gaussian random variables. This clearly satisfies (4); the vector
V turns out to be Gaussian, too.

Standard rate-distortion theory determines the minimum rate
R (in Figure 1) needed to achieve a distortion D to be

Rs(D) = minI(X5; Xs) (7

where the minimum is over all conditional densities p(Zg|zs)

that satisfy E||X — X||?> € D. Details can be found in [3].
The key step is to transform this problem into the partial KLT

domain. Since the partial KLT is an orthogonal transform,

Rg(D) = minI(Ys; Vs) (8)

‘where the minimum is over all conditional densities p(§sfys)

that satisfy

M
3 (1 +a)ElYs — ¥5i? + E[jV|{? < D.

i=1

)]

For the last equation, we have used (5). Since moreover, the
components of Y are independent random variables, the min-
imum of I(Ys, Ys) is achieved by a Y5 whose kth compenent
Y} depends only on Y. This leads to the following theorem.

Theorem 2: The rate-distortion function for the subsampled
Gaussian, illustrated in Figure 1, is given by

M
. 1 o?
Rs(D):nE)ltn?:?max{iiogz E:O}, (10)
where the minimum is over all D; satisfying
M A
S +e)EYs-YsP<D-E|IVIE. (D

i=}
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For the complete proof, we refer to {3].

This theorem says that an optimal compression system is the
one given in Figure 2: Apply the partial KLT, and compress the
components separately, using the appropriate bit allocation.
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Fig. 2. Compression of a subsampled set of correlaled Gaussian sources using
the partial KLT. This system is shown to perform optimally.

The appropriate bit allocation is found by solving the opti-
mization problem of Theorem 2. For the standard case (M =
N), the problem can be solved, e.g., using Lagrange multipli-
ers and the Kuhn-Tucker conditions (see e.g. [4, p. 348]). The
Kuhn-Tucker conditions for the more general case M < N are

1 1

_ 1 =0 ifD,'<Cr?,
2In2 Dy

<0, ifD;>02 (1P

+ A1+ a) {
which means that the rate allocation is different from the non-
subsampled case. Further details will be given in [3].

II1. THE CoNDITIONAL KLT

In this section, we study the scenario of Figure 3. This is
(in some sense) the complement of Figure 1: Here, the non-
encoded random variables are known perfectly to the decoder,
whereas there, they were not known at all. Intermediate cases
will be outlined in the next section and studied in [3]. By anal-
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Fig. 3. Compression of a subsampled set of correlated random variables for a
decoder that has side information.

ogy to Section II, two points of view are of interest to us:

1) Approximation. The M-dimensional random vector Xg
is approximated in a k-dimensional space. What is the

best such space if at reconstruction time, we know a ran-
dom vector X g which is correlated with X g7 This best
k-dimensional space can be determined easily using the
conditional XLT.

2) Compression. The M-dimensional random vector Xg is
compressed using a total of & bits for a decoder that has
access to X g.. What is the optimal compresston scheme?
For A = 1 and N = 2, the problem of Figure 3 has been
solved by Wyner and Ziv [5]. Here, we restrict attention
to the case where X is a jointly Gaussian random vector,
and we extend the result of [5] to arbitrary Af and N. We
show that the solution can be found using the conditional
KLT: Tt wransforms X5 into a vector Yg whose compo-
nents are conditionally independent given X .. Just like
in the standard K1.T, each such component is then com-
pressed separately by applying the Wyner-Ziv solution;
we determine the bit allocation between these A Wyner-
Ziv problems.

The main tool of this section is the conditional KLT:

Definition 2: The condirional KLT of Xg with respect to

Xg- is the matrix C satisfying
{13)

CEgs:CT = In,

where Yg|g- is the conditional covariance matrix with en-
tries {ESISC}i,j = CO’U(X,‘,X_,‘|X5:), Iy denotes the M-
dimensional identity matrix, and 7 the matrix transpose.
The transformed version of Xg is denoted by Y5 = CXs,
and A? = Var(Y;| Xse). :
Properties of the conditional KLT:
1) Orthogonal transform
2) The components of the vector Yg are conditionally un-
correlated given Xs-. If X is a vector of jointly Gaus-
sian random variables, then they are conditionally inde-
pendent.
1) Approximation Problem: The goal is to minimize the con-
ditional distortion E[||Xs — Xs}?|Xs-]. The key step is to
rewrite this in the conditional KLT domain as

E [IXs - XslF| Xs.] 2 B [lIvs - sl

XS.-]
Af

© e [ i),
=1

where (a) follows from Property 1) of the conditional KLT, (b)
from Property 2). The last expression can be rewritten in terms
of the conditional variances A2, yielding:

Theorem 3: The best k-dimensional approximation space
for the side information problem of Figure 3 is composed of
the k conditional eigenvectors (rows of C) corresponding to the
k largest conditional variances AZ.

For a detailed proof, see [3].

2) Compression Problem. The discussion 1s limited to the

case where X is a vector of jointly Gaussian random variables.
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The following relationship holds:

Xs = BXg. +U, (14)

where U is a Gaussian random vector independent of Xg..
Hence, in the Gaussian case, the conditional KLT is simply the
standard KLT of the random vector U
From the results of [5], [6], the smallest R (in Figure 3) per-
mitling a distortion of I is
R(D) =

m[in)I(XS;W|X5c), (15)

plwlzs
where the minimization is over all auxiliary random variables
W for which there exists 2 function Xg(W, Xg-) such that
E“Xg‘ - Xs(n", Xse.)ﬂz <D,
This can be rewritlen in the conditional KLT domain:

R(D) = min)I(YS;I’E"'|XSe.), (16)

pluiys
where the minimization is over all auxiliary random variables
W for which there exists a function YS(W, Xge) such that
Ei[¥s — Vs(W, Xs:)||* < D.

Duc to Property 1) of the conditional KLT, the distortion con-
straint is unchanged. Property 2) permits to simplify the mutual
information expression. One can artificially introduce auxiliary
random variables Wy, Wy, ..., W)y, where W; is allowed to
depend arbitrarily on Y. With this, we can write out

R = min I(Ys;W|Xg) (17)
plwlys)
min I(Ys; Wy,..., Wyl Xs) (18)
plun,...owar |ys)
(a) AT
> min (19)

3 1Y Wl Xse)
plwy,...,warlys) =
where (a) holds because ¥7, .. ., ¥y are conditionally indepen-
dent given Xg.. It can be shown that equality is attained in
(a) when the auxiliary W depends only on Y}, rather than on
all of Ys. For details, see [3]. This permits to rewrite {(19) as
R > TN minggu, ps) I (Ys; Wil Xse). The solution to the
minimization problem inside the surn has been found by Wyner
and Ziv |5]. Suppose that the distortion for the &-th component
is D¢. Using their result, we can give the foilowing theorem:

Theorem 4: The rate-distortion function for the problem

with side information, illustrated in Figure 3, is given by

1 A2
- mi § - Zi
R(D) = min 2 max {2 log, Di,O} (20)

where the minimum is over all D; satisfying 7. D; < D.
For a complete proof, see [3]. This result has alsc been found
in the context of Gaussian sources with memory [7].

The theorem says that the compression problem of Figure
3 can be optimally solved by the system shown in Figure 4:
A conditional KLT, followed by separate compression of each
component (using the techniques described in [5]).
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Fig. 4. Compression of a set of correlated Gaussian sources for a decoder
that has side information using the conditional KLT. This system is shown to
perform cptimally.

IV. THE DiSTRIBUTED KLT

The settings of Figures 1 and 3 are not truly distributed set-
tings: In both cases, there is only one encoder and only one
decoder.

A more interesting scenario is with two encoders and one
decoder: In Figure 3, add a second encoder, namely for Xge.
The deceder receives hoth codewords, and has to reconstruct X .
What are the best achievable rate pairs for the two encoders?
For the case M = 1 and N = 2, the best known region was
given in [8]. Our conjecture is that the extension of this region
can be achieved by a system that uses combinations of partial
and conditional KLT’s on the two sets of random variables. We
call these combinations the distributed KLT. This will be further
studied in [3]. '

Another interesting setting is with two encoders and rwo de-
coders. Simple instances of this can be solved immediately us-
ing the results of this paper. Take for example Figure 1 and add
a second encoder, namely for X g-. The output of this second is
observed only by a second decoder. Then, each encoder applies
a partial KLT 1o its observed random variables, followed by the
appropriate bit allocation, given by Theorem 2.
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