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ABSTRACT

We want to integrate colourfulness in an image quality evaluation framework. This quality framework is meant
to evaluate the perceptual impact of a compression algorithm or an error prone communication channel on the
quality of an image. The image might go through various enhancement or compression algorithms, resulting in
a different—but not necessarily worse—image. In other words, we will measure quality but not fidelity to the
original picture.

While modern colour appearance models are able to predict the perception of colourfulness of simple patches
on uniform backgrounds, there is no agreement on how to measure the overall colourfulness of a picture of a
natural scene. We try to quantify the colourfulness in natural images to perceptually qualify the effect that
processing or coding has on colour. We set up a psychophysical category scaling experiment, and ask people to
rate images using 7 categories of colourfulness. We then fit a metric to the results, and obtain a correlation of
over 90% with the experimental data. The metric is meant to be used real time on video streams. We ignored
any issues related to hue in this paper.
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1. INTRODUCTION

Modern pictorial imaging systems aim at producing the best looking picture rather than at achieving luminance
and colour fidelity. While evaluating the quality of a processed image, one needs to consider that if the resulting
image is different from the original one, it does not necessarily mean that it is of worse quality. When designing
a colour quality metric, we believe that two main factors have to be considered: colour cast and colourfulness.
In this paper, we will only consider the overall colourfulness of an image, without measuring fidelity.

We want to quantify ‘how bad’ is the colour in an image after compression. Our work is part of a larger
framework for measuring the perceptual quality of a video stream after transmission over a network, using a
no reference quality metric approach. The method should be able to work on a single image—or a single video
stream—without having the original image. In other words, we cannot determine the quality of a compression
and coding scheme by doing an image-based comparison between a compressed image and its original, because
the original image is simply not available. Ideally, the method should be able to say if an image is good, but
more practically, the scheme might use some meta data that comes along with the data, for example a set of
parameters defining the properties of the original image. Additionally, the idea of not using the original image
for assessing quality enables the method to deal with images that have gone through various tone mapping or
image enhancement algorithms.

Colour can get degraded in two ways: by colour casts or by a colourfulness loss. Modern colour appearance
models1, 2 are able to compute colourfulness correlates of colour patches depending on the viewing conditions and
surround. Nevertheless, there is no agreement on how to measure the overall colourfulness of a natural scene,
although very recent techniques try to adress image colour quality in a more general framework.3 To try to
answer the question of image colourfulness, we set up a psychophysical experiment, where the subject are asked
to rate the colourfulness by choosing among 7 categories. Finally, we try to get an algorithm that best fits the
result of the psychophysical experiment.
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This paper starts by describing the psychophysical experiment (section 2), and the method used to analyse the
data (section 3). Following section describes every parameter that is considered for building a metric (section 4),
along with the description of the method used to compute an optimal parameter set (section 5). The results are
shown next (section 6), followed by a section that might interest anyone concerned with efficient implementations
(section 7), where a metric that uses a much simpler colour space is proposed.

2. THE EXPERIMENT

We use 20 non expert viewers and ask them to give a global colourfulness rating for a set of 84 image. The
experimental conditions are described in.4 The user has to choose among the following categories:

1. not colourful

2. slightly colourful

3. moderately colourful

4. averagely colourful

5. quite colourful

6. highly colourful

7. extremely colourful

Prior to the experiment, 4 examples are shown, rated as ‘not colourful’, ‘slightly colourful’, ‘averagely colour-
ful’ and ‘extremely colourful’ to set the scale of the experiment. None of the examples show the same scene
content than the test images. We chose the 2 images in the middle of the scale after conducting a preliminary
experiment, using 5 expert viewers, and selecting the images rated with the least confusion among the viewers.
The 2 images in the extremity of the scale are chosen by the first author. We used 10 scenes, which we processed
by linearly reducing the chroma in CIELab space to generate the 84 test images. The images are shown on a
LCD monitor. The images are presented in random order, one image at a time on a grey background. A grey
screen lasting 300ms is displayed between each image. A subset of the images is shown in figure 1.

We choose to use a category scaling experiment, instead of a paired comparison experiment, to ensure that
the viewer adapts to the image white point, and to avoid the influence one image may have on the perception of
the other one. Since we consider that a greyscale image has no colourfulness, we can compute a ratio scale using
Thurstone’s law of comparative judgement, as described in Engeldrum.5

3. COMPUTING A SCALE VALUE FROM THE EXPERIMENTAL DATA

We briefly summarise the method found in Engeldrum5 in section 10.2.2—The reader not interested in imple-
mentation issues might as well skip this section. The use of a scale value allows to consider that the perceptual
distance between ‘slightly colourful’ and ‘moderately colourful’ might be different than the distance between
‘highly colourful’ and ‘extremely colourful’. As we have to attach numbers to these attributes, it is worth trying
to get a perceptually uniform scale. For example, if there is a lot of confusion in the judgment between ‘slightly
colourful’ and ‘moderately colourful’, i.e. a lot of images were rated in both categories by different people while
there is almost no confusion in the judgement between ‘highly colourful’ and ‘extremely colourful’, this would
mean that the distance between ‘highly colourful’ and ‘extremely colourful’ is larger than the distance between
‘slightly colourful’ and ‘moderately colourful’.

We will assume that the correlation between the categories as well as the discriminal dispersion of the
categories and the samples are constant (by ‘samples’ we mean the answers of the individual test persons). We
start by building a frequency matrix where the elements {Kjg} are the number of times the image j has been
put in category g. We define the cumulative proportion matrix with entries Pjg as

Pjg =

∑g

k=1 Kjk
∑m

k=1 Kjk



where m is the number of categories (m = 7). From probability Pjg we derive the z-scores zjg . Pjg and zjg are
related through

Pjg =
1√
2π

∫ ∞

−zjg

e−
1
2
ω2

dω.

Let tg be the (unknown) boundary value between the categories, and sj be the (unknown) scale value for each
category. The fundamental assumption underlying the scale computation is that

tg − sj = zjg . (1)

This can be put in matrix form as

z = X · y (2)

y := [t1 ... tm−1 s1 ... sm]T (3)

where z is a column vector containing all the z-scores zjg , X is a matrix used to make (2) equivalent to (1)∗ and
y is the unknown. If we know y, we know the scale values and the boundaries between the scales. The scale
values s define the distances between the categories, and thus have an arbitrary absolute value. Consequently,
in order to have a solution for (2), we impose an additional contraint, namely that

∑

j

sj = 0,

which is implemented by adding a line to matrix X and appending a 0 to vector z. The whole computation of scale
values is based on the fact that there is confusion among the observers. If there are images that get unanimous
ratings, they do not provide any scale information, and thus have to be removed from the computation. Finally,
the scale values are obtained by solving (2), thus

y = (XT X)−1 ·XT z.

4. THE METRICS

To compute a colourfulness metric, we study the distribution of the image pixels in the CIELab colour space.6

We assume that the image colourfulness can be represented by a linear combination of a subset of the following
quantities:

1. σa : The standard deviation along the a axis.

2. σb : The standard deviation along the b axis.

3. σab =
√

σ2
a + σ2

b : The trigonometric length of the standard deviation in ab space.

4. µab : The distance of the centre of gravity in ab space to the neutral axis.

5. Aab = σa · σb : A pseudo-area in ab space.

6. σC : The standard deviation of Chroma.

7. µC : The mean of Chroma

8. σ1 : The largest standard deviation in ab space (found by searching the direction in the ab plane along
which the standard deviation is maximum).

9. σ2 : The second largest (i.e. the smallest) standard deviation in ab space.

10. A12 = σ1 · σ2 : the area in ab space.

∗X is composed of 1, 0 or -1 only.



11. σS : The standard deviation of Saturation, calculated as Chroma over Lightness.

12. µS : The mean of Saturation.

By choosing a subset of these quantities, for example {σa, σb, µab}, we can express the colourfulness of the
image using a linear combination of them: Q = α1 ·σa +α2 ·σb +α3 ·µab. The parameters {α1, α2, α3} are found
by maximising the correlation between the experimental data and the metric, according to Section 5.

5. COMPUTING THE METRIC PARAMETERS

We want to obtain the parameter vector α (α := [α1 · · ·αm]
T
) that correlates the most with the experimental

data. To get a meaningful analysis—one that can be generalised to other images—it is important not to use the
same data in computing the correlation and in optimising the parameter set. One possibility is to use half of
our N images to compute the correlation, and the other half optimise the parameter set. Since the number of
images is quite small, we will compute the optimal parameter set using N − 1 images, and use it to compute the
colourfulness of the remaining image. We will repeat this experiment N times, to obtain N colourfulness values
that are used to compute the correlation of the metric with the experimental data.

Let M̂i be the colourfulness computed from image i. By assuming that we are using a subset of m parameters

x(i) :=
[

x
(i)
1 · · ·x(i)

m

]T

of image i among the parameters of Section 4, the colourfulness can be expressed as

M̂i = αT xi.

The parameters {αj} are found by maximising the correlation between the other N − 1 images of the test set
and the experimental values M exp found through the subjective testing:

{αj}i
= argmax

α2···αm

∑

k 6=i(C̃k − µC̃) · (M exp
k − µMexp )

√

∑

k 6=i(C̃k − µC̃)2 ·
∑

k 6=i(M
exp
k − µMexp )2

(4)

α1,i := 1,

C̃k :=
m

∑

j=1

αj · x(k)
j , (5)

where µ· denotes the mean value of (·). Since the parameter vector α is defined up to a constant factor, we set
arbitrarily α1 := 1.

The correlation ρ between the experimental data and the metric is found using

ρ =

∑N

k=1(M̂k − µ
M̂

) · (M exp
k − µMexp)

√

∑N

k=1(M̂k − µ
M̂

)2 · ∑N

k=1(M
exp
k − µMexp)2

(6)

Finally, the optimal parameter vector α is found by taking the mean value of the N parameter sets defined
in (4).

α =
1

N

N
∑

k=1

[α1 · · ·αm]
T

k .

Instead of this value, we also could have taken the parameter set that maximises the correlation between the
experimental data and the metric using all images. Note that the variance of parameters αi gives an indication
of how stable the optimal parameter set is with respect to the choice of the images.



Parameter subset correlation metric details
σ1, σ2, µC 94.2% σ1 + 1.46 · σ2 + 1.34 · µC

σa, σb, µab 94.0% σa + σb + 0.39 · µab

σab, µC 94.0% σab + 0.94 · µC

σab, µab 93.7% σab + 0.37 · µab

σa, σb, µC 93.6% σa + 0.78 · σb + 0.72 · µC

σ1, σ2, µab 93.5% σ1 + 0.81 · σ2 + 0.43 · µab

σS , µS 92.3% σS + 1.6 · µS

σC , µC 92.1% µC + 1.17 · µC

Aab, µab 88.8% Aab + 7.3 · µab

A12, µab 87.1% A12 + 9.3 · µab

Table 1. Correlation of various colourfulness metrics with the experimental data. Each line corresponds to a different
metric, detailed in the last column. The exact formulation has been obtained by an optimisation on the correlation value.

6. RESULTS

By choosing different subset of the attribute described in Section 4, we can try to find the best correlate to the
image colourfulness. Table 1 summarises the results. The result range from 94% down to 87% of correlation. To
select the best metric, we have to consider several aspects: The most obvious is the correlation to the experiment.
The second is the computational cost, and the last is related to the limitation of the experiment due to our initial
choice in the selection of the 10 scenes. Provided that the CIELab space has been designed to be a uniform colour
space, it does not seem reasonable to emphasize the red-green axis over the blue-yellow axis. The optimisation
showing a preference for one of the two axis may be biased by the choice of the test images. In other words, we
prefer the parameter σab to a sum of σa and σb, also because σab does not depend on the arbitrary direction of
the a and b axis. For computational reasons, we avoid using σ1 and σ2 because they require a Singular Value
Decomposition (SVD), without delivering substantially better results. We also want to avoid using saturation
(σS and µS), since it over-emphasises dark areas, precisely the area that get very roughly approximated by
compression algorithms. Unfortunately, we did not include compressed images in the test set, explaining the
good performance of these parameters†. Finally, we propose two metrics:

M̂ (1) = σab + 0.37 · µab (7)

M̂ (2) = σab + 0.94 · µC , (8)

where each symbol is defined in Section 4. Our colourfulness metric is a linear combination of the mean and
standard deviation of the pixel cloud in the colour plane of CIELab. The M̂ (1) metric seems more natural,
because it is a truly two-dimensional metric. It is also computationally more efficient but has a slightly worse
correlation, if we consider that a 0.3% difference in correlation is a significant difference.

7. A MORE EFFICIENT METRIC

In this section, we will try to reproduce the results of Section 6 using a computationally more efficient approach.
We use a very simple opponent colour space:

rg = R − G

yb =
1

2
(R + G) − B

†We knew from past experiences that saturation is not a good correlate when using compressed images, so we discarded
its use beforehand, but finally included it for comparison purposes.7 The use of compressed images in the test set would
probably have confirmed this argument.



Attribute M (1) M (2) M (3)

not colourful 0 0 0
slightly colourful 6 8 15
moderately colourful 13 18 33
averagely colourful 19 25 45
quite colourful 24 32 59
highly colourful 32 43 82
extremely colourful 42 54 109

Table 2. Correspondence between the colourfulness metric, and the colourfulness attributes.

We assume that the image is coded in the sRGB colour space. By reconducting the experiment described in
section 5, we get a new colourfulness metric

M̂ (3) = σrgyb + 0.3 · µrgyb,

σrgyb :=
√

σ2
rg + σ2

yb,

µrgyb :=
√

µ2
rg + µ2

yb,

where σ· and µ· are the standard deviation and the mean value of the pixel cloud along direction (·), respectively.
Surprisingly, the correlation of M̂ (3) with the experimental data is equal to 95.3%, thus it represents a very nice
and efficient way of computing the colourfulness.

8. HOW TO USE THE METRIC

The metric can be used to determine how colourfulness evolves by passing through a tone mapping or a coding
algorithm in the following ways:

∆Mε = M̂p − M̂o, (9)

∆M% =
M̂p

M̂o

, (10)

where M̂o is the colourfulness estimate of the original image, and M̂p is the colourfulness estimate of the processed
image. We would recommend the use of ∆Mε over ∆M%, but further experimentation would be necessary to
confirm this argument.

To give some intuition about the metric, Table 2 summarises the ‘meaning’ of the metric. For example, a
value of M̂ (3) = 59 means that the images is quite colourful.

9. CONCLUSIONS

We tried to introduce colour in an image quality metric scheme, and found that measuring colourfulness was
a very promising way to achieve this goal. We set up a psychophysical experiment and asked the viewers to
rate the colourfulness of an image picturing a natural scene. We then studied several metrics using the CIELab
colour space, and found a simple metric which correlates to about 94% with the experimental data. We also
proposed another metric, which is very easy to compute, and achieves an even better correlation (95%) to the
experimental data. This metric can be used to evaluate the performance of a coding scheme in real time.

We did not consider hue in our experiments. Nevertheless, a complete colour metric should take hue into
account, for example by measuring colour casts between the original and the processed image.
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APPENDIX A. DEFINITION OF THE IMAGE ATTRIBUTES

This section briefly defines the parameters used in Section 4

Let Ip be the pixel values of an image in Lab space, p = 1 · · ·N . The image has N pixels.

Ip := [Lp ap bp]
T

σ2
a :=

1

N

N
∑

p=1

(

a2
p − µ2

a

)

µa :=
1

N

N
∑

p=1

ap

µab :=
√

µ2
a + µ2

b

Cp :=
√

a2 + b2

µC :=
1

N

N
∑

p=1

Cp

σ2
C :=

1

N

N
∑

p=1

(

C2
p − µ2

C

)

Sp :=
Cp

Lp

µS :=
1

N

N
∑

p=1

Sp.

The parameters σ1 and σ2 need a Singular Value Decomposition (SVD) computation. Let U and V be two
orthogonal matrices. Let I be the matrix containing the colour of all the pixels of the image.

I :=

[

a1

b1
· · · aN

bN

]T

.

The matrix I can be written as
I = U · S ·VT ,

where S is a diagonal matrix. Finally σ1 and σ2 are computed as

[σ1 σ2] = [σa σb] · VT
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Figure 1. Images used in the experiment. (a),(b) and (c) are used in the scaling experiment. (d) is shown as example
before the experiment. (c.2) is has been obtained from (c) by linearly reducing the chroma in Lab space—the blue/purple
colour shift that arises in the operation should not affect the results since we are comparing images that are different from
each other. (a),(b) and (c) are taken from the Corbis royalty free collection.


