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Abstract— Routing in large-scale mobile ad hoc networks is chal-
lenging because all the nodes are potentially moving. Geographic
routing can partially alleviate this problem, as nodes can make
local routing decisions based solely on the destinations’ geo-
graphic coordinates. However, geographic routing still requires
an efficient location service, i.e., a distributed database recording
the location of every destination node. Devising efficient, scalable,
and robust location services has received considerable attention
in recent years.

The main purpose of this paper is to show that node mobility
can be exploited to disseminate destination location information
without incurring any communication overhead. We achieve this
by letting each node maintain a local database of the time
and location of its last encounter with every other node in
the network. This database is consulted by packets to obtain
estimates of their destination’s current location. As a packet
travels towards its destination, it is able to successively refine
an estimate of the destination’s precise location, because node
mobility has “diffused” estimates of that location.

We define and analyze a very simple algorithm called EASE
(Exponential Age SEarch) and show that in a model where N
nodes perform independent random walks on a square lattice,
the length of the routes computed by EASE are on the same
order as the distance between the source and destination even for
very large N . Therefore, without exchanging any explicit location
information, the length of EASE routes are within a constant
factor of routes obtained with perfect information. We discuss
refinements of the EASE algorithm and evaluate it through
extensive simulations. We discuss general conditions such that
the mobility diffusion effect leads to efficient routes without
an explicit location service. In practical settings, where these
conditions may not always be met, we believe that the mobility
diffusion effect can complement existing location services and
enhance their robustness and scalability.

I. INTRODUCTION

In large-scale ad hoc networks, some or all the nodes may be
moving. Therefore, the network topology changes with time.
Routing algorithms have to base routing decisions on at least
a partial knowledge of the network topology. The collection
and exchange of topology information (e.g., distance vectors
or link states) consumes valuable bandwidth and energy. A

variety of routing algorithms have been developed that trade
off the quality of routes, their computing and transmission
overhead, and the degree of permissible mobility [11].

Position-based (or geographic) routing exploits the fact that
nodes usually live in the plane. This enables nodes to make
local routing decisions based solely on the destinations’ geo-
graphic coordinates [8], [2], [3], [7] (see [10] for an excellent
review of position based routing). For this purpose, a mobile
ad hoc network is regarded as a set of nodes in the plane,
with an associated mobility process. Connectivity is achieved
through wireless links, and is thus essentially local (see [5] for
an example of the model). While the set of nodes and their
connectivity defines a graph, this graph is not arbitrary but
instead closely related to the geometry of the plane. In general,
a node only needs to know its own location and that of its
neighbors to make a routing decision towards any destination
node with a known location.

However, geographic routing still requires an efficient location
service, i.e., a distributed database recording the location of
every destination node. Devising efficient, scalable, and robust
location services has received considerable attention in recent
years [10], [9], [6], [14]. Interestingly, location and routing
have been mostly considered in isolation so far: a source first
looks up the current position of the destination through the
location service, and then routes a packet towards that position
using a geographic routing algorithm. This requires that the
location service has to be able to track all the nodes in the
network, and maintain a distributed database recording the
locations of these nodes. Every change in topology has to be
reflected in this distributed database, which inevitably involves
some exchange of location information between nodes, and
hence incurs a transmission cost. This transmission cost to
maintain location state therefore depends directly on the
amount of mobility, or the rate at which the network topology
changes.

An elegant way of reducing this cost is by exploiting the
distance effect [2], which is basically the observation that



the precision with which the position of a destination has
to be known to make a good, but sometimes suboptimal,
local routing decision at a node, depends on the distance
of that node from the destination. If the node is far away
from the destination, an imprecise estimate is sufficient, and
vice versa. Routing schemes such as DREAM [2] exploit
this effect to develop more “lazy” approaches to maintaining
location information about all the nodes in the network. This
approach essentially amounts to trading off a smaller location
maintenance overhead, which is incurred continually with
every topology change, for a slightly larger routing cost, as
routes are in general suboptimal.

In this paper, we go a step further and try to completely
eliminate the cost to update location state. If nodes are not
allowed to exchange any explicit location updates, then the
only local information available to a node about the network
topology is the history of other nodes it has encountered in
the past, i.e., that it has been directly connected to. More
specifically, we assume that every node remembers the time
and location of its last encounter with every other node (i.e.,
when these two nodes last were directly connected neighbors;
cf. Fig. 1). We call a routing algorithm a last encounter
routing (LER) algorithm if at every node along a packet’s
route, the next hop decision depends only on (a) the time
and location of that node’s last encounter with the destination,
and (b) auxiliary information carried by that packet. The main
question we ask in this paper is the following: if all the nodes
in the network are moving, is it possible for LER schemes
to compute efficient routes, despite the absence of a location
service? We show that, depending on the mobility processes,
this is indeed possible. This is quite remarkable, given that
LE routing invests no network capacity to track nodes, i.e., to
maintain distributed location information.

LE table node 4

LE table node 9
(x,y)

last encounter between 4,9

10

loc=(x,y), time=10

4

time

(x,y)49

time

node loc

10

locnode
9

Fig. 1. A last encounter table in every node remembers the location and time
of the last encounter with every other node in the network. In last encounter
routing (LER), this table is queried by a packet to improve, if possible, its
estimate of the location of its destination node.

The insight at the root of our investigation is the following.
On the one hand, mobility of the nodes creates uncertainty
about their location. On the other hand, consider some node d
that is the destination of a packet. Some other node i that has
encountered d in the past remembers the location of that last

encounter. Three observations explain why LE routing can give
rise to efficient routes: (a) the location of the last encounter is
still a reasonably good estimate of the destination’s location
after some time; (b) the time of that encounter, or equivalently,
the “age” of the estimator, is a measure for the precision
of that estimate; (c) node i’s own mobility means that a
recent estimate of d’s position is available at some distance
from d; given that d encounters other nodes all the time
due to mobility, this essentially leads to a diffusion effect
of noisy position estimates around d. The locality in the
mobility processes inherently leads to a distance effect, in that
better position estimates for d become available as a packet
approaches d’s current position.

Clearly, the feasibility of LER schemes will depend on the
mobility process. If at any point in time, a node can jump
uniformly over the entire surface of interest, an estimate based
on the previous location is of no help. However, in the more
likely scenario where the process has some locality, such as
a random walk, then aged location information is useful, and
diffuses at the same speed as the node moves itself. If the
density of neighbors is sufficient both along the path of the
destination node (so as to diffuse sufficiently) and along the
path of a packet moving towards the destination (to get enough
new estimates), then LE routing can work well.

The outline of the paper is as follows. The next section
discusses related work, while Section III describes the model
we are considering in more detail, in particular the topology,
the mobility model and the performance criterion. In Section
IV, we examine the asymptotic performance of LE routing
when the network size grows large, using standard results
from the theory of random walks. We look at a very simple
LER algorithm called exponential age search (EASE), and we
show that the expected path length obtained with EASE is of
the same order as the optimal path length even in very large
networks. Section V gives an improved version of EASE called
GREASE, which improves the estimate of the destination
location more aggressively as the packet moves along. Section
VI gives simulation results in fairly large networks (1000
nodes); they confirm the good performance and scalability
of EASE and GREASE. Finally, Section VII provides some
further insights and discussions.

II. RELATED WORK

Several position-based routing algorithms have been proposed
in the literature [8], [2], [3], [7]. The principal goal of these
algorithms is to ensure that a short route can be found if one
exists between a source and a destination whose locations are
known. This is not trivial, because forwarding greedily in the
direction of a destination is not guaranteed to work, as there
is no guarantee that a node always has a neighbor closer to
the destination than itself.

Mobility management is a basic problem in standard mobile
networks (see for example [14]). In ad hoc networks, the
situation is complicated by the absence of centralized servers



(home location registers). In an ad hoc network endowed
with position-based routing, mobility management amounts to
tracking the location of every potential destination through
a location service. This location service has to be itself
distributed across the ad hoc network, and this can be achieved
with various methods that trade-off complexity, overhead, and
robustness [10], [9], [4], [6], [14]. What is common to all
these location services is that they incur overhead by explicitly
exchanging location information between nodes, either to
update location information in the distributed database, to
request the location of a destination node, or both.

Approximate location services have been proposed in vari-
ous forms. For example, in the grid location service (GLS)
[9], a quadtree based location service creates a hierarchy of
square regions. Updates of a node’s position are sent to a
decreasing number of nodes acting as location servers as the
distance increases. In the geographical region summary service
(GRSS) [6], a similar grid location service is proposed, with
increased efficiency due to forwarding location aggregation.
For a more complete overview of location services and their
use in position-based routing, we refer to [10] and references
therein.

Our work is closest in spirit to the DREAM algorithm [2].
In DREAM, every node maintains a position table for every
other node. DREAM consists of a position update algorithm
and a routing algorithm. The position update algorithm ensures
that all the nodes in the network have a sufficiently accurate
estimate of a reference node’s position. This is achieved by the
reference node flooding a limited region around itself to install
new position estimates in the nodes in this region. The scope of
this flooding depends on the distance that the node has traveled
since the last such flooding. The routing algorithm ensures
that a packet can reach a destination efficiently and with high
probability, using restricted directional flooding based on the
region where the destination is expected to be located. The
approximate location is given by a circle around the last known
location of the destination, and the radius of this circle is given
by (t1 − t0) · vmax, where t1 is the current time, t0 the time
when the location was registered, and vmax the maximum
speed.

III. MODEL

We now describe the model used in the paper for analysis.
Although in reality, node positions are continuous processes
in continuous time, it is convenient for the analysis to use
discrete approximations. We therefore consider node mobility
processes on a square grid in slotted time. Our simulations
show that our main result on the efficiency of mobility
diffusion routing carries over to continuous settings with less
regular topologies (cf. Section VI).

Topology. For the sake of analysis, we make a discrete
approximation of the continuous geometry of a region in R2.
That is, nodes live on vertices of the M ×M square lattice.
More precisely, the topology is a two-dimensional square grid

of M2 vertices (x1, x2), x1,2 ∈ {1, . . . ,M}. The distance
|x2 − x1| = |x1

2 − x1
1| + |x2

2 − x2
1|, denotes the Manhattan

distance between two vertices.

There are N = λM2 mobile nodes that move on this
grid, where the node density λ remains fixed. Let Xi(t) =
(X1

i (t),X2
i (t)) denote the vertex where node i is located at

discrete time t. We assume that each node always knows its
current position on the grid and the identity of its neighbors.
The neighbors of a node at a given time are the set of other
nodes at the same vertex, as well as all the nodes reachable
through horizontal and vertical steps, where we are allowed to
“step over” empty vertices. In other words, a node is connected
to another node through a wireless link if there exists a path in
the underlying lattice connecting the respective vertices, such
that all the internal vertices of the path are empty. 1

This definition is convenient, as the topology is a connected
undirected graph at every time t. Sending a packet from a
source to a destination that are at Manhattan distance d of each
other requires at most d transmissions (hops) in this topology.

Routing. Nodes wish to send data packets to each other. A
node may forward a packet only to its neighbors. Therefore, it
is necessary for nodes to serve as relays on behalf of packets
of other nodes. In the analysis, we will focus w.l.g. on a single
destination node with index 1, with the nodes i = 2, . . . , N
serving as potential relays for packets destined for node 1.

With each node i ∈ {2, . . . , N} we associate an age variable
Ti(t) that records how long ago node i was last a neighbor of
the destination node. More formally,

Ti(t) = t− max
τ≤t

{τ : |Xi(τ) −X1(τ)| ≤ 1} . (1)

Let V (i, t) be the neighbors of node i at time t. A last-
encounter routing scheme is a function that computes the next
hop neighbor j ∈ V (i, t) for a packet k that has arrived at node
i, i.e., j = f(Xi(t), Ti(t),Wk), where Wk is some auxiliary
information carried by the packet. This auxiliary information
can depend only on the set of nodes traversed so far by the
packet.

Mobility. The position Xi(t) of node i at discrete time t
is an independent random process with uniform stationary
distribution over all nodes. More specifically, we assume that
Xi(t) is a two-dimensional random walk on the square lattice,
i.e.,

Xi(t+ 1) = Xi(t) + ∆i(t), (2)

where the ∆i(t) are i.i.d [12]. Also, both components of ∆i(t)
are i.i.d., with zero mean and finite variance σ2. We assume
that the random walks reflect at the boundary of the square
lattice.

Time scales. In our analysis, we assume the realistic scenario
of nodes moving at “human” speeds, while packets move at

1Note that λ should be large enough to ensure that empty regions remain
small.



light speed. Thus, while topology changes occur at time-scales
of minutes or longer, packets can be expected to spend at most
tens of milliseconds (due to queueing and propagation delay)
in the network. This allows to decouple the time scales, such
that for the purpose of routing a packet, the nodes are frozen
for the time of the routing to conclude.

Cost metric. Let C(s, d, t) denote the total number of trans-
missions (or hops) necessary to transmit a packet from source s
to destination d at time t. This cost will include both transmis-
sions of the actual packet from a sender to a receiver node to
make progress towards its destination, as well as transmissions
necessary for a “search” packet to collect information from
surrounding nodes to make the next routing decision.

We now define the Exponential Age Search (EASE) routing
algorithm. EASE computes routes purely based on last encoun-
ters, which means that no transmission capacity is sacrificed
to explicitly diffuse location information or to maintain a view
of the current topology. The goal of EASE is to be so simple
as to be amenable to analysis and to provide insight into
the conditions under which mobility diffusion provides good
routes. In Section V, we will discuss a slight modification
of EASE that improves performance, but is less amenable to
analysis.

In the description of the algorithm, we assume w.l.g. that t =
0.

Algorithm 1: The EASE algorithm

1 Set T0 := Ts(0), Y0 := Xs(0), k := 0.
2 Repeat
3 Search the nodes around Yk in order of increasing

distance until a node i is found such that Ti(0) ≤
Tk/2.

4 Let Tk+1 = Ti(0), and Yk+1 := X1(−Tk+1) be the
new anchor point.

5 While not at Yk+1

6 Route packet: find next hop j towards Yk+1 and
forward packet to j.

7 End while
8 k + +.
9 Until Yk = X1(0).

Initially, the packet is at its source at position Xs(0). In
steady state, the destination node has visited this position with
probability 1 at some time −T0 in the past. The basic idea
behind EASE is for a route to follow the trajectory X1(.) of
the destination node between t = −T0 and t = 0 in “jumps”
of decreasing length, until the packet arrives at the current
position X1(0) of the destination node. We call the end-points
of such jumps anchor points. We do not prescribe a particular
routing algorithm for the packet to get from one anchor point
to the next; any position-based routing algorithm could be
used for this purpose (cf. Section II). Note that according
to our definition, EASE is a last encounter routing (LER)
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Fig. 2. A sequence of anchor points computed by the EASE algorithm; the
search disks Sk are also shown. A node in each search disk around anchor
point Yk provides the next anchor point Yk+1, which corresponds to the
point on the trajectory of the destination of at most half the age of the current
anchor point.

algorithm, where the auxiliary information carried with the
packet consists of the age and location of the last encounter
with the destination by a node in the vicinity of the previous
anchor point.

IV. ASYMPTOTIC PERFORMANCE OF EASE

In this section, we analyze the asymptotic performance of
EASE when the network size N becomes large. Recall that
EASE incurs no a-priori overhead to track topology changes,
unlike traditional location services. The main question we need
to answer is then how large the penalty will be when we route a
packet from a source to a destination using only last-encounter
information. We show that under the topology and mobility
model described in the previous section, the mean route length
between a source and a destination is on the same order as
shortest routes, even for very large networks. Our main result
is as follows.

Claim: For two arbitrary nodes s and d, the route from s to
d calculated by the EASE algorithm satisfies

E [C(s, d, t)] = O(
√
N). (3)

Note that the expected distance between a randomly selected
node pair is also on the order of

√
N . The result therefore

implies that mobility diffusion-based routing is asymptotically
efficient, in that routes obtained through EASE are at most a
constant factor longer than the distance between source and
destination nodes.
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Fig. 3. At every anchor point Yk of age Tk , the EASE algorithm performs
a search until a new anchor point of age at most Tk/2 is found.

We are unable to provide a full proof here. However, we
outline the steps of the proof in the remainder of this section in
sufficient detail to give an intuition of why EASE succeeds in
computing asymptotically efficient routes, and to crystallize
out the salient features of the node mobility processes that
permit to this efficiency.

It is useful to make the following definition. A search box S
of size S centered at node i is a set of S nodes (including
i) such that they are contained in the smallest square of grid
points centered at Xi(0) that contains S nodes at time 0. Note
that the expected side length of a search box of size S is
approximately

√
S/λ, because there are on average λ nodes

per grid position. We denote by Sk the size of the smallest
search box centered at anchor point Yk that contains the node
i providing the next anchor point Yk+1. Note that the cost of
searching this search box is proportional to Sk

2.

1) Single search step. Let us consider the kth iteration
of EASE, and derive its approximate cost as N grows
large. Suppose the packet is at position Yk, and assume
that the age of this estimate is Tk, i.e., Yk = X1(−Tk).
Now consider the trajectory of the destination node
over the interval [−Tk/2,−Tk/4]. The goal of the kth
iteration of EASE is to find a node i close to Yk that
provides a new anchor point Yk+1 = X1(−Tk+1), such
that Tk+1 ≤ Tk/2. We have to determine how many
nodes Sk have to be searched on average until a new
anchor node is found. We will show that the cost of
searching for this new anchor node is small compared
to the cost of actually forwarding the packet to Yk+1.

2) Messenger node. Consider a node i that is a neighbor of
the destination node at some time −t between −Tk/2

2In practice, this search could be performed, for example, through a TTL-
constrained (Time To Live) local flooding, where the TTL is doubled every
time the search has been unsuccessful.
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Fig. 4. One EASE step: (a) The span encloses the path
X1(−Tk), . . . , X1(−Tk/4) of the destination node. (b) For a search
to be successful, a “messenger” node i encountered by the destination
between −Tk/2 and −Tk/4 must perform a random walk to end up within
the search box at time t = 0. The worst case occurs if Xi(−Tk/4) and
Yk = X1(−Tk) are at opposite corners of the span.

and −Tk/4. We call such a node a messenger node3.
The size Sk of the search box will be determined by the
locations of the messenger nodes at time 0.
Let us consider the span of the trajectory of the
destination node, i.e., the smallest box containing
{X1(−Tk), . . . , X1(−Tk/4)} (cf. Fig. 4(a)). This box
has a side length on the order of L = O(

√
Tk) [13,

Chapter 5].
3) Hitting probability of a single messenger node. Let

us consider the probability that one of the messenger
nodes hits a search box of given size Sk. We can lower
bound this probability by conservatively assuming that
the messenger node starts in one corner of the span at
the latest possible time, i.e., at t = −Tk/4, and that Yk

is located in the opposite corner of the span (cf. Fig.
4(b)). It is a worst case because one quadrant of the
search box is closer to the starting corner than Yk.

3Note that we are conservative in only considering messenger nodes
encountered up to time −Tk/4. This assumption ensures that the distance
traveled by the destination between −Tk and the time of encounter t ∈
[−Tk/2,−Tk/4] is comparable to the distance traveled by the messenger
node between t and 0.



Let us assume that L and Sk are fixed. We first focus
on a single dimension d = 1, 2 and determine the
probability p that in dimension d, the messenger node
i hits the quadrant of the search box overlapping the
span. By the central limit theorem, this probability is
approximately

p = Pr

{
Xd

i (0) −Xd
i (−Tk/4) ∈

[
L−

√
Sk

λ
,L

]}

= Pr

{
Xd

i (0) −Xd
i (−Tk/4)

σ
√
Tk/4

∈
[
L−√Sk/λ

σ
√
Tk/4

,
L

σ
√
Tk/4

]}

= Q

(
L−√Sk/λ

σ
√
Tk/4

)
−Q

(
L

σ
√
Tk/4

)

≈ 16
σ

√
Sk

λTk
φ

(
2
σ

)
= c
√
Sk

Tk
, (4)

where φ is the pdf of a standard normal random variable
and c is a constant that does not depend on Tk.
Thus, the probability for a single messenger to hit a
search box of size Sk is lower bounded by

phit = p2 = c2
Sk

Tk
. (5)

4) Number of messenger nodes. Now consider the set of
all nodes W = {i : |Xi(t) − X1(t)| ≤ 1,−Tk/2 ≤
t ≤ −Tk/4} that are neighbors of the destination node
at some point between −Tk/2 and −Tk/4. The size Sk

of the search box required to find the next anchor point
is the smallest box centered at Yk that contains one of
the positions Xi(0), i ∈ W . First, we need to compute
the size of the set of (distinct) nodes W encountered
by the destination. Note that this is different from the
number of nodes encountered by the destination, which
is of the order of Tk, because it is possible that the
destination encounters a node more than once between
−Tk and 0. Of course, we should “count” a node i
that is encountered multiple times only as one potential
messenger node.
We can determine the size of W by noting that the dif-
ference between X1(t) and Xi(t) is also a random walk.
The probability that node i and node 1 do not encounter
each other again within Tk steps after a first encounter
is equal to the probability that the difference random
walk X1(Tk) − Xi(Tk) does not return to the origin
within Tk steps. In two dimensions, this probability is
O(1/ log Tk) [13, Chapter 4, p. 125]. Therefore, the size
of W satisfies

||W || = Θ
(
Tk

log Tk

)
. (6)

5) Hitting probability for any messenger node. The key
observation to compute the probability that any messen-
ger node hits the search disk of size Sk is that con-
ditional on the destination’s trajectory, the trajectories

of the nodes i ∈ W after encountering the destination
node are independent of each other, and therefore the
hit events are independent as well.
The probability that at least one of the nodes in the set
W hits the search box satisfies therefore

pany = 1 − (1 − phit)
||W || ≈ 1 −

(
1 − Sk

Tk

)Tk/ log Tk

(7)
Therefore, Sk is on the order of log Tk

4. As the cost of
forwarding the packet at the kth iteration is on the order
of

√
Tk, we have

lim
N→∞

Sk

C(Yk, Yk+1, 0)
= 0, (8)

i.e., the cost of searching is insignificant compared to
forwarding the packet.

6) Total cost C(s, d, 0). The total cost of incurred by EASE
to route a packet from the source s to the destination d
is

C(s, d, 0) =
K−2∑
k=0

C(Yk, Yk+1, 0) + Sk +

C(YK−1,Xd(0), 0), (9)

where K is the number of steps required to reach the
destination.
Note that the typical age Ts(0) at the source is O(N),
and the first EASE step is therefore of typical length
|Y0 − Y1| = O(

√
N). As EASE reduces the age Tk of

its anchor points by a factor of at least two with every
iteration, the sequence of distances between successive
anchor points |Yk − Yk+1| decreases geometrically. Its
sum converges and is therefore O(

√
N).

As we have pointed out, this argument is not technically
rigorous, but it provides the intuition to explain why the total
cost of a route, including both search cost and forwarding
cost, does not grow faster on average than the shortest path
route cost when the network grows large. One aspect of the
above argument that is imprecise is the assumption that the
side length L of the span is fixed and of typical length σ

√
Tk.

In reality, of course, L is a random variable, and we would
have to take the expectation of search cost over L. A slight
complication then arises for the case when L happens to be
atypically large, as the conditional probability for a messenger
node to hit the search box by traveling far enough is then very
small. In this case, the search box is atypically large 5.

One way to avoid this problem is to add a cutoff distance
criterion to the simple half-age based criterion in the EASE
algorithm. Specifically, if L � σ

√
Tk, i.e., the destination

node has traveled atypically far between time −Tk and time
−Tk/4, then the probability of finding a messenger node i in
an iteration of line 3 of the EASE algorithm is very small. We
can then modify the condition to accept a new anchor point as

4Because limx→∞(1 − c/x)x = e−c.
5Unless special precautions are taken to avoid these atypical cases, it can

be shown that the expectation of search box size actually does not exist.



follows: find a node i such that either (a) Ti(0) ≤ Tk/2 (the
existing criterion), or (b) Ti(0) < Tk and |X1(−Ti(0))−Yk| >
cσ

√
Tk, where c > 0 is some constant. Condition (b) ensures

that in the unlikely event of an atypically large L, the EASE
algorithm accepts a new anchor point Yk+1 that reduces the
age by less than a factor of two, but still makes typical progress
towards the destination in terms of distance.

We now discuss some qualitative properties of the node
mobility processes that make LER succeed. From the above
argument, we can identify two general conditions that have to
be satisfied. The first condition concerns the distance traveled
by the messenger nodes. For messenger nodes to have a
reasonable chance of hitting a given search box, the typical
distance traveled by a messenger node between the time of
encounter with the destination and time 0 has to be comparable
to the distance traveled by the destination between −Tk and
the time of encounter. This requires a certain homogeneity
in the mobility processes of the nodes. In Section VI, we
will examine a case where mobility processes are highly
inhomogeneous; we find that it is very difficult to route
towards destinations that move much more quickly than most
other nodes.

The second condition concerns the density of messenger nodes
within the span. In order for the probability to be reasonably
high that at least one messenger node hits the search box, there
should be a sufficient number of such nodes, i.e., the set W
has to be large enough. This is the case if the nodes’ mobility
processes are such that the total number of grid vertices visited
over a time interval t is asymptotically much larger than the
distance between the start and end location for that interval.
This is because the size of the setW grows essentially with the
number of grid vertices visited, while the probability of hitting
a node of the search box decreases roughly as the square
of the distance (cf. (7)). For random walks, this condition is
satisfied, as the size of W grows almost linearly with t, while
the distance grows only as

√
t. In Section VI, we will examine

a random waypoint mobility model where this scaling between
number of encounters and distance is much less favorable
than for a random walk; we find that the cost of routing is
considerably higher in this case.

V. GREASE: THE GREEDY EASE ALGORITHM

The EASE algorithm described in the previous section operates
in two alternating phases. In the first phase, when a packet has
reached an anchor point, it performs a local search around that
anchor point to find the next anchor point. In the second phase,
an existing position-based routing algorithm is used to route
the packet towards the new anchor point. We have made no
assumptions about the specific routing algorithm used for this
purpose.

The two-phased approach is useful to analyze the performance
of EASE and to develop an understanding of why it achieves
low cost routes. However, it is clear that EASE ignores a lot of
potentially useful information, as it does not consult the local

LE databases of the nodes it traverses in the second phase.
Therefore, we propose a modified algorithm called GREASE
(GReedy EASE) that checks the age of the last encounter
with the destination at each hop. If it encounters a node that
has a more recent estimate of the destination’s location than
the anchor point the packet is currently headed to, then that
estimate is assumed to be the new anchor point.

Algorithm 2: The GREASE algorithm

1 Set T0 := Ts(0), Y0 := Xs(0), k := 0.
2 Repeat
3 Search the nodes around Yk in order of increasing

distance until a node i is found such that Ti(0) ≤
Tk/2.

4 Let Tk+1 = Ti(0), and Yk+1 := X1(−Tk+1) be the
new anchor point.

5 While not at Yk+1

6 Route packet: find next hop j towards Yk+1 and
forward packet to j.

7 If Tj(0) ≤ Tk+1, then Tk+1 := Tj(0), Yk+1 :=
X1(−Tk+1).

8 End while
9 k + +.
10 Until Yk = X1(0).

Note that it is entirely possible, and actually a frequent
occurrence, that GREASE finds the destination without leaving
the inner loop, if the packet always finds a more recent location
estimate for the destination before it reaches the current
estimate (anchor point). In this case, a search is performed only
once around the source. An example of this case is provided
in Figure 5.

VI. SIMULATION RESULTS

We have performed a range of simulations in order to evaluate
the quality of routes computed by EASE and GREASE. In
these simulations, we are interested in the relative cost of
routes followed by EASE and GREASE as compared to the
shortest path between the source and destination. We know
from Section IV that for random walks, they are of the same
order, but we do not know the constants involved, and we
do not know what performance to expect for other classes
of mobility processes. Thus, we investigate various scenarios
with different mobility processes (small versus large variances,
homogeneous versus heterogeneous traffic, various single step
distributions including heavy tailed ones, random waypoint
mobility).

Nodes are constrained to move in a disk of surface area N , so
that the average node density is 1. The location Xi(t) of node
i at discrete time t is an independent constrained random walk,
where the disk boundary is reflecting6. We look at Gaussian

6Note that we go back to the Euclidean domain.
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Fig. 5. A sample GREASE route. In this case, the greedy local improvement
of the packet’s anchor point carries the packet all the way to the destination,
without any further searches after the initial search around the source.

and heavy tailed single-step distributions. We also consider
a random waypoint model, which has frequently been used
in simulation studies of ad hoc networks, but which is not a
random walk.

The node positions are initially uniformly distributed over the
disk. We then run the random walks for a sufficient warm-
up period so that a fair proportion of node pairs have met at
least once. Note that the spread of a single random walk is
O(σ · √Twu) after a warm up time Twu. Recalling that the
size of the domain is O(

√
N), the warm up time must be

of order O(N/σ2). In most simulations, we used a warmup
period of 10’000 iterations, except for the heterogeneous case,
where we used 40’000 iterations. This ensures that in all the
simulations, the fraction of node pairs that have met is at least
30%. Note that the performance of EASE and GREASE is
obviously monotonically improving with the warmup time, as
the fraction of node pairs that have had encounters increases.

At every time t, we assume that connectivity is given by the
Delaunay graph generated by the set of points {Xi(t)}. This
is equivalent to generating the Voronoi tessellation of the set
of points {Xi(t)}, such that every node Xi(t) is the center
of a Voronoi cell, and is connected to the center nodes of its
adjacent cells. Each node updates the entries in its LE database
for its directly connected neighbors.

The advantage of this topology over other topologies we
could have adopted (e.g., k nearest neighbors) is that we are
guaranteed that a node always has a neighbor that is closer
to a destination (except when that destination is already in
the first node’s Voronoi cell). Therefore, a packet can always

make progress towards its anchor point, and we do not have
to deal with backtracking, avoiding routing loops, etc. This
allows us to focus on the main issue at hand, i.e., the quality
of computed routes based on diffused information about last
encounters.

The main metric we evaluate is the relative cost of
EASE/GREASE routes compared with the cost of the shortest
path route. The relative cost metric therefore captures the
relative penalty incurred for not having the exact position of
the destination available. More specifically, we generate a set
A of random source-destination pairs (s, d). The empirical
relative cost β̂ is then given by

β̂ :=
π

4||A||
∑

(s,d)∈A

Ĉ(s, d, 0)
|Xs(0) −Xd(0)| , (10)

where A is a random set of source-destination pairs, and
where Ĉ(s, d, 0) is the empirical cost, i.e., total number of
transmissions for both forwarding and searching, to get a
packet from source s to destination d at time 0. The factor π/4
stems from the fact that the expected length of the shortest path
between two nodes s and d in the Poisson-Delaunay graph is
equal to 4/π|Xs(0) −Xd(0)| [1].

In the simulation results below, we actually give the relative
cost conditional on the distance between the source and
destination. This provides an indication on whether the relative
quality of EASE/GREASE routes increases or decreases as
routes get longer.

Gaussian increments, homogeneous mobility. First, consider
a homogeneous population with i.i.d. Gaussian position incre-
ments of variance σ2. As σ increases, we expect the entire
process to become noisier, resulting in less efficient routes.
We therefore expect the constants involved to be dependent on
σ. This is verified empirically in Figure 6, which shows the
empirical distribution of relative cost for EASE and GREASE
for σ = 0.3 and σ = 1.0. As can be seen, approx. 90%
of the routes are less than 3 to 8 times longer than optimal,
depending on σ and the chosen algorithm. Note that GREASE
outperforms EASE by a factor of 2 or more in all cases of
interest.

Figure 7 shows the relative cost, conditioned on the source-
destination distance being smaller than d, i.e., |Xs(0) −
Xd(0)| ≤ d. That is, we look at increasingly large attempted
source-destination distances, and see how the ratio between
found and shortest routes evolves. Very interestingly, the
ratio decreases monotonically and stabilizes at some rather
small value, especially for GREASE. While these simulations
do not go beyond 1000 nodes, they seem to indicate good
scaling properties, since restricting the distance to a certain
d approximates a network with d2 nodes. At very small
d, it seems some small scale discretization effect hurts the
behavior (going in the wrong direction in a very small network
quickly decreases the performance). Between d = 10 and
d = 32 (corresponding to a network of a 100 to a 1000 nodes,
respectively) the performance of GREASE at low σ seems to



have stabilized, with routes about 1.7 times as long as the
minimal length.
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Fig. 6. The empirical complementary CDF (CCDF) of relative cost for both
EASE and GREASE and various values for the single-step standard deviation
σ.
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Fig. 7. The empirical conditional mean of the normalized cost, conditional
on the initial source-destination distance |Xs(0) − Xd(0)| ≤ d, plotted as a
function of d.

Gaussian increments, heterogeneous mobility. For the sake
of discussion, assume a static population and a single fast
moving node. Clearly, this is an unfavorable situation. The
source node needs to find the trail of the destination node,
and then the packet simply follows the trail. If source and
destination have met at time −T0, the expected distance
between source and destination is O(

√
T0), but the path length

is O(T0). In this case, the incurred cost is O(
√
T0) larger than

optimal.

Thus, consider the following scenario: a small number of
nodes moves much faster than the other nodes. More specifi-
cally, out of the N = 1000 nodes, 10 nodes have σfast = 0.5,
while the remaining 990 nodes have σslow = 0.05. We are
interested in this experiment to evaluate the difficulty for a
packet to find a fast destination node, compared to a packet
with a slow destination. Figure 10 shows the result of this
experiment with a heterogeneous population. As expected, the
performance of tracking fast nodes based (mostly) on slow
mobility diffusion is substantially worse than tracking slow
destinations.

It is instructive to watch the actual working of the algorithm for
fast and slow destinations, respectively. In Figure 8, a sample
path with GREASE shows that the algorithm needs to search
around its current location at several points in order to route
towards one of the fast destinations, leading to a costly route.
In Figure 9, routing to a slow destination does not lead to any
local searches at all, and a much better route.
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Fig. 8. A sample route for a fast destination with σfast = 0.5. Note that
GREASE invokes searches around its current anchor point several times, and
that the route is relatively long.

Infinite-variance increments. In this scenario, we consider
heavy-tailed increment distributions, which allows nodes to
make occasional large jumps. Specifically, the complementary
CDF FR(r) of the single-step distance R is given by

FR(r) = Pr {R > r} =
(
r + θ
θ

)−α

, (11)

with θ = 0.2 and α = 2. For this choice of parameters, E [R] =
θ/(α−1) = 0.2. Note that Var [R] = ∞ for α ≤ 2. The angle
Φ of the single-step increment is uniform over [0, 2π).

As to be expected, the performance of both EASE and
GREASE will degrade due to the unbounded variance of
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Fig. 9. A sample route for a slow destination with σslow = 0.05. Note
that GREASE invokes no local searches beyond the initial search around the
source, and the route is very efficient.

the steps. However, Figure 11 still shows a decrease in the
conditional relative cost with distance.
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Fig. 10. The empirical conditional mean of the normalized cost, conditional
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function of d, for (1) slow destinations; (2) fast destinations.

Random waypoints. A principle at work in our analysis is
that a sufficient number of encounters need to be made as the
destination travels a given distance. In the random walk case,
this number is advantageous, since for a distance O(

√
T ),
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Fig. 11. The empirical conditional mean of the normalized cost, conditional
on the initial source-destination distance |Xs(0) − Xd(0)| ≤ d, plotted as
a function of d, for (1) heavy tailed single step distributions; (2) random
waypoints.

a number O(T ) encounters are made that then spread the
information.

Let us consider a case where the number of encounters is of the
same order as the distance traveled. In this scenario, nodes do
not perform random walks. Rather, each node has a randomly
chosen waypoint that it moves towards with constant speed of
0.3/step. Once a node reaches its waypoint, a new waypoint
is chosen uniformly on the disk, and the node immediately
starts moving towards the new waypoint. As can be seen, while
performance is degraded quite a bit with respect to the best
case (slow destinations with slow mobility), LE routing still
appears to be feasible in this scenario.

VII. DISCUSSION AND CONCLUSION

This paper defines last-encounter routing, a scheme that solely
relies on information carried by a packet (in the case of
EASE and GREASE, the age and location of the most recent
encounter by any node on the packet’s path so far) and on the
current node’s last encounter with the destination. As such,
LER uses no network capacity to explicitly update location
information. We have shown that LE benefits from mobility
diffusion, as nodes spread out estimates of the destination’s
position. As a packet travels towards its destination, it is able
to successively refine its estimate of the destination’s precise
location.

Intuitively, mobility diffusion exploits three salient features
of the node mobility processes: locality, mixing, and homo-
geneity. Locality is a necessary ingredient to ensure that aged
information about the last encounter with a destination node
is still useful to a packet that tries to find that destination.
Mixing of node trajectories (or at least the absence of complete



synchronization of movement processes) ensures that position
information about a destination node diffuses around this
destination node, because a node continually encounters new
neighbors. Homogeneity in the mobility processes ensure that
the “speed of diffusion” is of the same order as the movement
of a destination, so that location information spreads at least
as fast as the destination moves.

The benefit of locality has been recognized and exploited
before (e.g., [2], [9]). Specifically, the DREAM algorithm
proposes to flood position information about a destination
node in a limited area, depending on how far this node
has moved [2]. Also, in the GLS system [9], the authors
recommend that nearby location servers be updated more
frequently than faraway ones, for the same reason. However,
the crucial novel observation in the present paper is that at
least for certain classes of mobility processes, this limited
diffusion of position information can be obtained for free: the
movements of other nodes that have recently encountered the
destination implicitly lead to the same effect, without investing
any costly transmission resources. This is certainly of interest
in ad hoc networks, where communications costs represent a
major bottleneck.

We plan to investigate several ways to further improve the
performance of LE routing. First, besides the mobility dif-
fusion based on last encounters, we can use packet-based
diffusion. Recall that EASE/GREASE packets carry along
the most recent location information for the destination. If
a packet passes through a node that does not have a better
(more recent) estimate, the node can update its own database
for the destination location7. For heavy traffic, this clearly can
make a difference. This type of diffusion depends on the traffic
process, rather than node mobility.

Second, the problem of destination location estimation can be
posed as a general estimation problem, with two components:
(1) estimation based on a search around the current position
of the packet (but taking all the data into account) and (2)
estimation based on the whole path of the packet from the
source to the current position. In cases where mobility has
more temporal structure than a random walk, such estimators
may be able to improve performance.

Third, we have focused on the extreme scenario where last
encounter routing alone is used and no overhead is incurred
for a location service, and we have identified conditions on the
node mobility processes under which LER provides efficient
routes. In practical settings, mobility processes may possess
features that are not captured in the stochastic models studied
here. It is an open question how LER performs with more
realistic mobility patterns. However, at the very least, we
expect LER to have the potential to improve the performance
of existing location services. This is an interesting topic for

7Of course, the node can also trivially obtain the exact position of the
source from a packet. Note that when two nodes establish a two-way session
to exchange multiple packets, both nodes would know their exact position
after one round of packets. Therefore, suboptimal LE routes would be used
only for this first round.

future research.
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