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ABSTRACT

Distributed ways of communicating, processing, and sensing are
replacing more traditional centralized architectures. An early ex-
ample of this revolution in distributed communications is appear-
ing in the form of sensor networks, which are densely distributed
networks of embedded signal sensors, controls and processors.
These nodes could be simple signal sensors, but could also be
cameras and microphones. In this distributed scenario, there are
several interesting topics to investigate that span from traditional
signal processing problems (i.e, sampling, compression, detection)
to communication and information theory (i.e, transmission proto-
cols, capacity bounds for ad-hoc networks). This paper reviews
some recent results on the topic of source representations and dis-
tributed source coding and transmission.

1. INTRODUCTION

With the advent of sensor networks and other distributed sources
and channels, a new paradigm for signal processing and commu-
nications is emerging. This has a profound impact on the way we
think about signals, the way we process and compress signals, and
the way we transport them to the end user.

Before exploring this new paradigm, let us review the clas-
sical point-to-point scenario: a source is acquired, processed and
communicated, the typical example being speech processing and
transmission. From the source point of view, the bandwidth is key
for acquisition, and so is the rate-distortion function for compres-
sion. From the channel point of view, the bandwidth is critical, as
is the capacity-cost function. Underlying both source and channel
coding is the separation principle, which allows to exchange bits
between the source and the channel.

In the new, distributed scenarios, both the sources and chan-
nels are distributed, and separation based coding is usually sub-
optimal. Consider the sources: signals are rarely point sources,
rather, they are distributed phenomena spatially sampled by acqui-
sition devices (e.g. temperature, sound fields). Thus, the critical
value for acquisition is the spatio-temporal bandwidth. Histori-
cally, many phenomena were highly undersampled spatially, but
the possibility of having dense sensor networks opens up the pos-
sibility of sampling at the Nyquist rate.

The structure of the spatio-temporal data is critical to develop
efficient compression schemes. Examples of such structures are
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already found in stereo images and sounds, and become even more
relevant as the number of sensors increases. The compression can
either be centralized or decentralized as is more often the case in
sensor networks. In the former case, the structure of the data can
be fully utilized, while in the latter case, distributed source coding
needs to be applied.

The channel for transmission is typically a many-to-many chan-
nel, for example with shared bandwidth like in the wireless case.
The attempted transmission might be many-to-one (like in many
sensor applications), leading to a multi-access channel. In any
case, such multiuser channels can lead to difficult questions re-
garding fundamental limits on capacity, and an effective method
to use the channels. But even worse, since the separation princi-
ple does not hold, it is unclear that maximizing the capacity of the
multi-user channel will ultimately lead to minimizing the distor-
tion for the signals to be transmitted.

Finally, at the receivers, one or many reconstructions of the
sensed signals are performed. The quality of such reconstructions
will depend on all the steps described above, as well as on the
reconstruction algorithms.

To be more specific, let us consider a multicamera system in
a room. The structure of the visual data is given by the plenop-
tic function [1], and sampling results indicate (approximately) the
number of cameras required to be able to synthesize any view [2].
Now, if the cameras are not connected by a cheap communica-
tion channel, they need to perform ”independent” compression but
using prior knowledge about correlations or dependencies in the
data. The download of the video to a central observer uses a mul-
tiaccess channel. Moreover, the channel could be split into suc-
cessive aggregations, where recoding could be performed. Finally,
at the receiver, some arbitrary views (that is, as seen from a po-
sition between actual cameras) can be synthesized, possibly using
super-resolution techniques.

As can be seen from this example, there is a wealth of interest-
ing and challenging signal processing and communications issues
to be addressed. To sum up, the problems central to distributed
signal processing and communications concern:
- distributed signal acquisition and sampling
- representation of dependent data (e.g. plenoptic and plenacoustic
functions)
- distributed compression of correlated and dependent data
- transmission and joint source-channel coding
- reconstruction of distributed signals.

In the present paper, we will address the above points, and
stress the fundamental interaction of sources and channels in dis-
tributed scenarios.
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The outline of the paper is as follows. Section 2 is concerned
with distributed signals and their structure, in particular the plenop-
tic and plenacoustic function, as well as the sampling of these
functions. Section 3 reviews correlated source coding, and indi-
cates some recent results on correlated data gathering. Finally,
Section 4 discusses the distributed Karhunen-Loève transform.

2. THE STRUCTURE OF DISTRIBUTED SIGNALS

Given a certain physical phenomena, the signals that are possible
are potentially very structured. Consider the very familiar exam-
ple of linear time-invariant systems, like for example a room and
its associated acoustic field. If the source is a pure sinusoid, then
whatever the location of a microphone, it will pick up a sinusoid
of the same frequency, the only unknowns being the amplitude and
phase. More generally, if many sensors pick up a phenomenon,
strong dependencies may exist between that various sensor data. In
the sequel, we investigate two cases of particular interest, namely
light fields and acoustic fields. In both cases, the first question to
solve is the sampling question: is a sufficient representation possi-
ble from a countable or finite set of sensors?

2.1. The plenoptic function and its sampling

The plenoptic function was first described by Adelson and Bergen
[1]. Let us consider the simpler problem of the number of camera
along a line that are necessary to synthesize any view along the
line. To study this, consider the model of a pinhole camera, which
describes an idealization of the projective geometry performed by
a camera. Thus, all rays from the real world (more precisely the
one visible) pass through the pinhole and are projected on the film
plane (which can be in the front or the back of the pinhole). Now
consider the following simple set up: the camera can be located
anywhere on a line �, and looks perpendicular to the line. The
film plane is parallel to the line �, and indexed by � (for now we
ignore the second dimension). This set up is shown schematically

Fig. 1. Plenoptic function: setup.

in Figure 1, part (a). In part (b), the mapping of two points is
shown, leading to two lines in the plenoptic space. The key point is
that the slope of the line depends on the distance of the point from
the focal point, and if there is a finite depth of field, there is a finite
range of slopes. This is the key insight that leads to a sampling
theorem for the plenoptic function, as derived by Shum et al. [2].
In a nutshell, the Fourier transform will be limited angle as well,
and if it decays sufficiently fast, a sampling can be done while
retaining most of the energy, see Figure 2. From such samples,
the plenoptic function can be well interpolated, and thus, arbitrary
views can by synthesized. Substantial work along this line has
been done see for example [2].

Our work in this area led to both a positive and a negative re-
sult. First, if the observed scene is made of simple objects, but not

Fig. 2. Spectrum of the plenoptic function.

necessarily bandlimited, then one can use recent results on sam-
pling of finite rate of innovation signals [3] and sampling of the
Radon transform of such objects [4]. In particular, plenoptic sam-
pling is a particular case of the Radon sampling, and it was shown
in [4] how a finite number of projections and a finite number of
samples allowed to reconstruct perfectly a set of Diracs. Such a
result can be seen as a superresolution approach to some paramet-
ric plenoptic functions.

As far as bandlimitedness is concerned, it can be shown that in
general, the plenoptic function is not bandlimited. For the same ar-
gument, consider a smooth bandlimited wall, on which a bandlim-
ited function has been painted. This seems a very well behaved
environment. Unfortunately, unless the wall is linear, the resulting
plenoptic function will not be bandlimited [5]. The argument re-
lies on time scaling of bandlimited functions, but can be intuitively
be understood by the following argument: assume the wall is si-
nusoidal, in which case the plenoptic function relate to frequency
modulation. This in turn leads to Bessel function, which are not
bandlimited.

2.2. Plenacoustic function

Similarly to the idea of the plenoptic function [1, 2], we have in-
troduced the plenacoustic function. It characterizes the sound field
in space, e.g. inside a room. We are interested in the room impulse
responses to characterize what one would hear at any point in the
room. Knowing this information, we can simply calculate the con-
volution of the sound produced by the source at some point in the
room with the room impulse response from the source’s position
(S) to the listener’s position (R). The plenacoustic function is thus
parameterized by the following factors:

���� ��� � 	
����
�� 
����
�������
� 
� �

�� ������

As it is impossible to store the whole information contained in
the plenacoustic function, we need to sample this function. First,
we sample the room impulse responses at a certain temporal sam-
pling rate depending on the desired audio bandwidth. Further, by
taking an evenly spaced finite number of impulse responses, we
uniformly sample the plenacoustic function in space. The study of
the plenacoustic sampling answers the following question: ”How
many microphones do we need to place in space in order to com-
pletely reconstruct the sound field at any position in space?”

We consider (without loss of generality) the plenacoustic func-
tion along a line in the room. By calculating the �-dimensional
Fourier transform of this data, we obtain Figure 3. The figure
shows a bandlimited triangular spectrum. We can see that the spa-
tial frequency (��) support grows for increasing temporal frequen-
cies (��). Spatial sampling of the plenacoustic function at some
spatial sampling frequency will lead to aliasing for all the temporal
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Fig. 3. �-dimensional Fourier transform of plenacoustic function.

frequencies above some corresponding temporal frequency. Simi-
larly to the Shannon theorem, we can develop a sampling theorem
about the necessary spatial sampling frequency in order to recon-
struct the plenacoustic function up to some temporal frequency. To
reconstruct the plenacoustic function, we use the usual interpola-
tion techniques. We can also show that using a quincunx sampling
grid divides the number of samples to process by a factor �. In [6],
we also find a mathematical derivation of the plenacoustic func-
tion and experimental results matching the developed theory are
presented.

3. POWER EFFICIENT DATA GATHERING

In this section, we explore one particular case of source channel in-
teraction, namely the question of how source correlation structure
influences the tree building process in a data gathering application.

The scarce resource for autonomous sensor networks is the
battery power, which is mostly used when transmitting data. The
goal is to find an optimal communication structure, which mini-
mizes the overall power cost of the transmission. The data gath-
ering problem considers the case when there is one node to which
all data should arrive (the base station), and all other nodes are
information sources.

We will make a set of assumptions to make our model tractable
to analysis. We assume nodes are fixed, and know their locations.
We consider the link-based channel model, which corresponds to
the case of e.g. uni-directional antennae. The network measures
a property (e.g. temperature) of a random data field, at locations
corresponding to the positions of its nodes. We assume measured
data is spatially correlated, but i.i.d. in time. Denote by �� the
random variable that represents the data measured at node �. The
correlation in the data nodes is independent of the distance be-
tween the nodes. We will assume moreover that the amount of
information at any node can be coded with a fixed number of
bits: ����� � ��������� � � � � � � � for all �� � �� �, with
� � � � �. Let � � � � ���� � � � � � be the correlation
coefficient. When � is close to �, the data are strongly correlated;
when � is close to �, the data are independent. Our goal is to obtain
a spanning tree for the network graph, that minimizes

�
�

���

��	 ��� �� � ��� ��
�

��


��	 ��� �� (1)

where � are the leaf nodes in the tree and ��	 ��� �� the sum of
weights of edges connecting node � to � on the �� tree. When
� � � the optimal tree is the shortest path tree (which is known to

be solvable in polynomial time by e.g. a distributed Bellman-Ford
algorithm). When � � �, the optimal solution is a spanning tree
for which the sum of paths from the leaves to the base station is
minimum (multiple traveling salesman problem), and finding it is
known to be NP-hard. In [7] we show that the problem is NP-hard
in the general case � � � � �. We only state here the main result,
a detailed proof can be found in [7].

Definition 1 MINIMUM POWER GATHERING TREE
INSTANCE: A undirected graph � � ��� � with lengths

���� assigned to the edges ��� �� �  , a positive integer ! , and a
particular node � � � .

QUESTION: Does the graph admit a spanning tree �� such
that the total cost of �� as defined in expression (1) is at most!?

Theorem 1 There is no polynomial time algorithm that solves the
MINIMUM POWER GATHERING TREE problem, unless P=NP.

One practical scenario where such a setting is useful is the case
of a distributed sensor network, where the sensors measure and/or
monitor some environmental data with strong correlation structure
(e.g. temperature). In the set-up phase, autonomous sensors are
dropped on the area of interest, and they find their respective lo-
cations in a distributed fashion. They build a data gathering tree
using a distributed algorithm (e.g. the shortest path tree, or the
minimum spanning tree). The sensors have to gather data over
a long period of time, so power is the main resource that needs
to be preserved. The algorithms that take into advantage corre-
lation in the data can outperform standard algorithms for power
efficient data gathering. Algorithms to find good approximate tree
solutions for expression (1) may provide significant improvements
in the power consumption. The heuristic we propose builds in a
simple and distributed manner a structure which is more power ef-
ficient than standard algorithms. In our simulations with random
networks, the power consumption is reduced with up to ��	, so
the life time of the network can be increased accordingly. An ex-
ample is shown in Figure 4.

4. DISTRIBUTED COMPRESSION

In this section, we consider the distributed signal processing prob-
lem depicted in Figure 5: Multiple sensors (in the figure, three)
measure each a part of a set of correlated random variables� . We
assume the covariance matrix of� to be known and fixed through-
out, and for the purpose of this article, we also assume � to be a
vector of jointly Gaussian random variables. More general cases
are studied in [8]. Sensor � senses !� of the random variables of
� . Each sensor independently furnishes a certain approximation
of what it measured to a central decoder whose goal is to produce
an estimate 
� of the entire vector � in such a way as to minimize
the mean-squared error  ��� � 
� ���. We consider two approxi-
mation scenarios:
1. Sensor � furnishes a "�-dimensional approximation to its mea-
sured data, "� �!�. What is the best approximation space? For a
given set �"�� "�� � � ��, what is the smallest achievable distortion?
2. Sensor � provides a bit sequence of rate �� bits per sample. For
a rate-tuple ���� ��� � � ��, what is the smallest achievable distor-
tion?

Special versions of this problem can be solved in closed-form,
including the case of the partial KLT, by which we denote the case
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Fig. 4. Data gathering trees on a network with # � ��� nodes:
(a) shortest path tree, (b) greedy approach , (c) leaves deletion, (d)
total power [power unit � distance unit �]. If the sources transmit-
ted data directly to the base station, the total power would be one
order of magnitude larger.

when "� � �, � 	 �, and the conditional KLT, by which we denote
the case when "� �!� , � 	 �.

For the case of the partial KLT, sensor 1 measures the cor-
related random vector �� � ���� ��� � � � � ���

�, with covari-
ance matrix �� . Denote the remaining part of � by ��� �
������� � � � � �
 �. Since � is Gaussian, we can write ��� �
$�� �� , where�� and � are independent. The best "�-dimen-
sional approximation that sensor 1 can furnish is in a subspace of
the KLT of �� , i.e., of the eigendecomposition of �� . Out of
its eigenvectors, the best "� choices are the ones corresponding to
the "� largest modified eigenvalues �� � ���%�� , where %�� are the
eigenvalues of �� , and �� �

���

��� ��$�
������

�, where � is the
KLT transform matrix. For the compression problem, a solution
can be found along similar lines, see [8].

For the case of the conditional KLT, denote the conditional co-
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Fig. 5. The distributed KLT problem

variance matrix of�� given ��� by ����� , which exists since �
is Gaussian. The best "�-dimensional approximation that sensor 1
can furnish is a subspace of the conditional KLT of�� given��� ,
i.e., of the eigendecomposition of ����� . Out of its eigenvectors,
the best "� choices are the ones corresponding to the "� largest
eigenvalues &�� . For the compression problem, a solution can be
found along similar lines, see [8].

These two results can be combined as follows. Suppose that
sensors �� 
� � � � have fixed their "�-dimensional approximation
space. What is the best "�-dimensional approximation that sen-
sor 1 can furnish? This scenario is equivalent to a scenario where
some sensors furnish all of their measured data, i.e., "� � !� ,
and others furnish nothing at all, i.e., "� � �. This is the combi-
nation of the partial and the conditional KLT. Collect the approx-
imations furnished by sensors �� 
� � � � in the vector ' �

�� , and the
discarded (or hidden) parts in the vector ' ��

�� . By the joint Gaus-
sianity of the components of � , we can write ' ��

�� � $��� �
$�'

�
�� � � , where � is independent of both �� and ' �

�� . The
solution for the combined problem can be stated in the follow-
ing shape: The best "�-dimensional approximation that sensor 1
can furnish is in a subset of the eigenvectors of the conditional
covariance matrix �
�� �

��
. The best subset is the one correspond-

ing to the "� largest modified eigenvalues �� � 
��&�� , where 
� ��
�������������
��� ��$�(

������
�, where( is the conditional KLT

transform matrix.
Finally, consider again the problem depicted in Figure 5. The

above combination of the partial and the conditional KLT suggests
an algorithm to determine the best solution: Initialize each sensor’s
operation by selecting an arbitrary orthonormal transform and us-
ing the first "� components as the approximation furnished to the
decoder. Then, in turn, each sensor updates its transform and its
choice of "� components. Numerical studies and the convex shape
of the involved functionals suggest a rapid convergence of this pro-
cedure. A formal proof of convergence is under way.
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