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ABSTRACT

In this paper, we present a simple method to almost quadruple the spatial resolution of aliased images. From a
set of four low resolution, undersampled and shifted images, a new image is constructed with almost twice the
resolution in each dimension. The resulting image is aliasing-free. A small aliasing-free part of the frequency
domain of the images is used to compute the exact subpixel shifts. When the relative image positions are known,
a higher resolution image can be constructed using the Papoulis-Gerchberg algorithm. The proposed method is
tested in a simulation where all simulation parameters are well controlled, and where the resulting image can
be compared with its original. The algorithm is also applied to real, noisy images from a digital camera. Both
experiments show very good results.
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1. INTRODUCTION

Although digital cameras are appearing everywhere, a high resolution digital camera is still very expensive. The
size of the CCD remains a limiting factor in the camera design. It would be much cheaper if a CCD with a
small amount of pixels could be used several times to produce images of the same quality as a larger (and more
expensive) CCD. This approach will be followed in this paper. We use a set of low resolution, undersampled
images, which have been taken at slightly different positions, to reconstruct a high resolution image of the same
scene.

Such a setup is typical in superresolution imaging. The concept was first introduced by Tsai and Huang.1

They used a frequency domain approach for image registration and reconstruction of Landsat satellite image
data. One of the main disadvantages of frequency domain methods is that they only allow for global motion
of the entire scene. Another approach based on Bayesian and maximum likelihood (ML) methods is taken by
Schultz et al.,2 Elad and Feuer,3 and Baker and Kanade.4 Hendriks and van Vliet5 make a comparison of
different methods using cross-correlation and Taylor series. A good overview of the existing methods is given by
Borman and Stevenson.6

The superresolution problem is most often divided into two tasks. First, image registration is required because
the images are generally taken without knowing their relative positions. Some interesting frequency domain image
registration algorithms are described by Kim and Su7 and Stone et al.8 Irani et al.9 describe a spatial domain
approach, which allows for multiple motions in the same image. Afterwards, the high resolution image can be
reconstructed from the registered images. Cenker, Feichtinger, and Herrmann10 describe different methods based
on an alternating mapping, using the known information about the signal in a repetitive way. They also discuss
possible criteria for quality/performance measurements. Strohmer11 describes a reconstruction algorithm based
on the solution of a linear system of equations, using two-dimensional trigonometric polynomials. The system
of equations is solved using the conjugate gradient method. Keren et al.12 and Hardie et al.13 describe methods
which start from an initial guess of the high resolution image. Then they improve this image by simulating the
imaging process and minimizing the difference between the observed and simulated low resolution images.
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The images received by the CCD sensor of a digital camera have their bandwidth limited by the optical
system. If the sampling density satisfies the Nyquist criterium, perfect reconstruction conditions are satisfied
and the bandlimited image can be reconstructed from its sampled image points. On the other hand, if the
sampling density is too low to satisfy the Nyquist criterium (or equivalently, if the cutoff frequency of the optical
system is too high), the resulting image will be aliased and perfect reconstruction is impossible. More information
is therefore needed. Our algorithm combines the information from four subpixel shifted low resolution images
that are undersampled by a factor less than two in both dimensions. From these aliased images, we reconstruct
an aliasing-free image with almost double resolution in both rows and columns.

This paper is structured as follows. In Section 2, we will discuss the algorithm for computing the subpixel
shifts between the images. After image registration, a higher resolution image can be reconstructed (Section 3).
Some results on artificially created and real images will then be shown in Section 4. In Section 5, results and
possibilities for future work are discussed, and Section 6 concludes the article.

2. REGISTRATION

2.1. Shift estimation in one dimension

The registration algorithm is first developed for one-dimensional signals. s(t) is a bandlimited continuous signal
with maximal frequency fmax. This signal is sampled at times t0, t0 + T, t0 + 2T, ...t0 + NT with a sampling
frequency fs, taking fs > fmax. This results in a sampled signal s1[n], n = 0, 1, ..., N . We now sample s(t) again,
at the same sampling frequency fs, but at times t0 +δ, t0 +T +δ, t0 +2T +δ, ..., t0 +NT +δ, which are shifted by
an unknown shift δ compared to the first set of sampling times. We call this sampled signal s2[n], n = 0, 1, ..., N .
Figure 1 illustrates this concept.
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Figure 1. (a) Original signal s(t). (b) and (c) Sampled and aliased signals s1[n] and s2[n].

If fs satisfies the Nyquist criterium, fs > 2fmax, s(t) can be perfectly reconstructed from s1[n] or s2[n]
separately, and the shift δ - although not needed because s(t) has already been reconstructed - can be derived
from the two reconstructions using a correlation operator. One signal is sufficient to make a perfect signal
reconstruction.

If we assume fs has a value fmax < fs < 2fmax, we know from Shannon sampling theory that a perfect
reconstruction of s(t) from s1[n] or s2[n] is not possible, because s1[n] and s2[n] will be aliased. Direct com-
putation of δ using a correlation operator is impossible, because the aliasing effect causes the two signals to
be different. But, because fmax < fs, s1[n] and s2[n] also have a part that is aliasing-free, namely for the
frequencies |f | < fs − fmax. It is then possible to apply a lowpass filter to s1[n] and s2[n] with cutoff frequency
fs − fmax, which results in two identical, aliasing-free signals s1,low[n] and s2,low[n] (Figure 2). If we suppose
s(t) has non-zero energy in the frequency band −fs + fmax < f < fs − fmax, δ can be computed from s1,low[n]
and s2,low[n] using a correlation operation.
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Figure 2. (a) Original signal s(t). (b) Sampled and aliased signal s1[n] with the appropriate lowpass filter indicated. (c)
Lowpass filtered signal s1,low[n]

2.2. Motion estimation in 2D

This method can now easily be generalized to two-dimensional signals by performing all operations on the two
signal dimensions (rows and columns) separately. We start from a 2D signal r(x, y), which has maximal horizontal
frequency fmax,h and vertical frequency fmax,v. Sampling at

(x0, y0) (x0 + Tx, y0) (x0 + 2Tx, y0) · · · (x0 + MTx, y0)
(x0, y0 + Ty) (x0 + Tx, y0 + Ty) (x0 + 2Tx, y0 + Ty) · · · (x0 + MTx, y0 + Ty)
(x0, y0 + 2Ty) (x0 + Tx, y0 + 2Ty) (x0 + 2Tx, y0 + 2Ty) · · · (x0 + MTx, y0 + 2Ty)

...
...

...
. . .

...
(x0, y0 + NTy) (x0 + Tx, y0 + NTy) (x0 + 2Tx, y0 + NTy) · · · (x0 + MTx, y0 + NTy)


for r1[k, l] and at

(x0 + δx, y0 + δy) (x0 + Tx + δx, y0 + δy) · · · (x0 + MTx + δx, y0 + δy)
(x0 + δx, y0 + Ty + δy) (x0 + Tx + δx, y0 + Ty + δy) · · · (x0 + MTx + δx, y0 + Ty + δy)
(x0 + δx, y0 + 2Ty + δy) (x0 + Tx + δx, y0 + 2Ty + δy) · · · (x0 + MTx + δx, y0 + 2Ty + δy)

...
...

. . .
...

(x0 + δx, y0 + NTy + δy) (x0 + Tx + δx, y0 + NTy + δy) · · · (x0 + MTx + δx, y0 + NTy + δy)


for r2[k, l], the signal is sampled twice, with horizontal and vertical sampling frequencies fmax,h < fs,h < 2fmax,h

and fmax,v < fs,v < 2fmax,v. Tx and Ty are the horizontal and vertical sampling periods, respectively.

This results again in two aliased signals, which can then be lowpass filtered to r1,low[k, l] and r2,low[k, l] (with
filters having cutoff frequencies fc,h = fs,h − fmax,h and fc,v = fs,v − fmax,v). From these two filtered signals,
δ = (δx, δy) can be derived using a two-dimensional correlation operator. A similar method for 2D motion
estimation was used by Kim and Su7 and Stone et al.8

3. RECONSTRUCTION

We use the Papoulis Gerchberg algorithm14, 15 for the construction of the high resolution image. This algorithm
is a special case of the Projection Onto Convex Sets (POCS) method. We assume that the image belongs to two
convex, linear sets. Through repeated projections, the algorithm converges iteratively to the desired image at
the intersection of the two sets.

The values at unknown pixel positions are set to zero during initialization. At each iteration, two projections
are performed. First the image is projected onto the set of bandlimited signals by setting the frequency values



to zero for frequencies larger than the maximal allowed frequency fmax. Next, the image is projected onto the
set of unknown samples by assigning the correct values again to the known samples.

This algorithm converges to the desired solution if the number of known samples is larger than the number
of unknown Fourier coefficients. Sampling at a frequency fs > fmax results in N2 sample values per image,
for (2K)2 = 4K2 Fourier coefficients (N > K). Therefore, a total of d4K2/N2e images will be needed to
reconstruct a good high resolution image. If we assume that K < N but close to N , four images will be needed
for reconstruction to have maximal gain in resolution. The effective bandwidth of the resulting (reconstructed)
image is (fmax − ε)2, compared to (fmax/2)2 for the original, aliased images.

4. RESULTS

In this section, some experiments with the described method and their results will be discussed. In Section 4.1,
we will describe a simulation where four low resolution images were created from an original high resolution
image. It is then possible to verify if the reconstruction conditions are satisfied. The results can be compared
with the ground truth image, which is not available in an experimental setup. In Section 4.2, an experiment
is described where a high resolution image is created from four images, captured by a digital camera, without
exact knowledge about the parameters.

4.1. Simulation

First, we test the algorithm on an artificial set of images in order to have as much control as possible over the
different parameters. We start from an original image (256x256 pixels), which we consider as the equivalent
of the real continuous space. This image is then filtered using an ideal lowpass filter with cutoff frequency
fc = 0.125fs,original − ε, with fs,original the original sampling frequency of the high resolution image, and
ε = 0.005fs,original. Next, the filtered image is downsampled by a factor eight, keeping only every 8-th sample.
Note that this is different from a normal lower-resolution image, where a set of pixel values from the high
resolution image would normally be averaged to form a pixel of the low resolution image. Four downsampled
images are derived like this, by shifting the set of selected pixels each time by a random number of pixels (0-7)
in both horizontal and vertical directions.

This provides us exactly with the setup described above. We have four low resolution images (32x32 pixels),
which are sampled at frequency fs, with fs = fmax + ε (fmax = fc is the maximal frequency in the image).
We can then apply our algorithm to these low resolution images, compute the relative shifts between them and
construct a high resolution image (see Figure 3). The reconstructed image is a very good approximation of the
original (MSE=7.46e-6).

4.2. Experiment

The algorithm is also applied to a set of four images that were taken with a black and white digital camera
(Figure 4). The camera was moved by a small amount for the different images, but the scene didn’t change.
Thus, we have only global motion. All four images have aliasing artifacts in the high frequency region (before
blurring starts to occur). The extra difficulty in this case is that the sampling frequency and the maximal signal
frequency are unknown, as is usually the case in realistic settings. As aliasing is only noticeable for relatively
high frequencies, we assume the sampling frequency fs can be approximated as fs = 1.1fmax, meaning that 10%
of the frequency content of the signal is aliasing-free.

We apply the subpixel shift estimator to the four images, and we find relative shifts of (0.4,-0.3), (0.2,-0.2),
(0.8,0.1) pixels for the second, third and fourth image, respectively, compared to the first image. Using these
shift estimates, we can construct the high resolution image using the Papoulis-Gerchberg algorithm. Figure 5
shows that the aliasing has been removed from the images and a higher resolution image has been constructed.
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Figure 3. (a) Original image (256x256). (b) Lowpass filtered image (reconstruction target). (c) One of the four low
resolution images to start from (32x32). (d) Reconstructed high resolution image. The MSE between images b and d is
equal to 7.46e-6.

5. DISCUSSION AND FUTURE WORK

The price of CCD image sensors decreased sharply in the past few years. Cheap CCDs appear in many products:
mobile phones, credit card sized digital cameras, surveillance equipment, etc. However, the images they produce
often have very poor quality. They are blurred and suffer from aliasing artifacts. Therefore, it would be very
interesting to produce high quality images from a large number of these lower quality images. The method
described above almost doubles the maximal signal frequency that is atteignable in both rows and columns, re-



Figure 4. Four original (aliased) images taken with a black and white digital camera. The contrast in the images has
been increased for illustration purposes.
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Figure 5. (a) One of the original images. (b) Resulting high resolution, aliasing-free image. The contrast in the images
has been increased for illustration purposes.

moving aliasing that results from the typical sampling process. The whole motion estimation algorithm described
above depends on the presence of a (small) aliasing-free part in the sampled signal. Because this aliasing-free
part is exactly the lowest frequency part, the method is relatively insensitive to noise, which is typically a high
frequency phenomenon.

The practical applicability of this method depends on the modulation transfer function (MTF) of the camera’s
optical system. In general, digital cameras are designed such that the optical system blocks frequencies that
would cause aliasing. An optical system is chosen with an MTF which is zero at frequencies larger than the
Nyquist frequency (given by the CCD sampling rate). Aliasing effects are avoided, at the expense of a blurring
of the image. For images taken with these types of cameras, our method is not effective. It only works for
cameras where frequencies larger than the Nyquist frequency pass through the optical system onto the CCD. On
the other hand, most color digital cameras use a CFA filter array. This type of array usually has twice as many
sensors for green as for red or blue. The optical system is designed to eliminate aliasing in the green channel of
the image. Because there are only half as many red and blue pixels, aliasing is possible in those channels. They
are subsampled by a factor smaller than two in both dimensions, so our method is perfectly applicable and could



produce very good results.

Future work will include the analysis and development of a new reconstruction method which makes better
use of the regularity in the set of samples. In fact, the sample positions are not totally random. They form a set
of periodic nonuniform samples, for which more efficient reconstruction methods can be developed.

In the current simulations, we assume the signal is sampled using a Dirac sampling proces. In reality, of
course, we need to use a point spread function to model the sampling process. This causes the image to be
blurred compared to an image sampled with Dirac sampling. It would be very interesting to include a realistic
point spread function in our model and analyze its effects on the resulting high resolution image.

6. CONCLUSIONS

In this paper, we presented a new method to create a high resolution image from four undersampled, aliased
images. The new image has almost double resolution in both dimensions. The method is based on an exact
computation of the relative motion between the images from an aliasing-free part in the images. The high
resolution image is then reconstructed using the Papoulis-Gerchberg algorithm.

Simulations and experimental results show that this method also works in practice. In the simulations, the
ground truth image was reconstructed with very small error. The experiment shows an image from which all
aliasing is accurately removed.
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