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ABSTRACT 

When instruments play together, different partials will often over- 
lap in time and frequency. This is particularly likely for harmonic 
instruments. We present a new method for the separation of over- 
lapping partials in multi-channel mixtures. The method is based 
on the obsewation that when a harmonic instrument plays a note. 
all the partials have similar shapes, i.e. common onset. offset. an- 
plitude and frequency modulation. For nmow band partidls we 
devise a method to estimate a demixing matrix that can recover the 
original Source partials from the multi-channel mixture where they 
overlap. The method is computationally efficient in that it works 
on highly downsampled narrow frequency bands and it performs 
equally well for closely spaced partials as for crossing partials, e.g. 
due to frequency modulations such as vibrato effects. It is able to 
separate partials in mixtures with a high number of or,erlapping 
panials, such as two instruments playing notes where the funda- 
mental frequencies are in fifth ( 3 2 )  or octave (2:l) relation. 

1. INTRODUCTION 

The problem of separating individual sound sources from a mix- 
ture of these is one of the core problems of Computational Audi- 
tory Scene Analysis (CASA). This problem has become increas- 
ingly popular over the recent decades and a number of methods 
have emerged. However, none of these deals successfully with 
mixtures of harmonic instruments where many of the partials over- 
lap. 

In sinusoidal models [ I 1  each sound is represented as a set of 
sinusoidal trajectories. Each of these is parametrized by its am- 
plitude, frequency and phase trajectories. Sinusoidal modeling is 
a well suited tool for the detection of overlapping partials, but it 
is only able to separate panials that can be detected as separate 
trajectories in the time-frequency representation. There exist sev- 
eral methods to improve the frequency resolution of the FF? 121. 
A model fining approach for least-squares estimation of colliding 
sinusoids [3] and methods for interpolation of colliding trajecto- 
ries 141 have also been proposed. None of these methods come 
close to the frequency resolution that may be needed in order to 
separate overlapping partials from harmonic instruments. Sinu- 
soidal models have also been used for cancellation of beatings in 
closely spaced panials [ 5 ] .  However, all of these approaches have 
problems in capturing small frequency fluctuations in the original 
partials. This means that, e.g., vibrato is not preserved in the sep- 
arated signals and small errors in the partial frequency may bring 
them “out of tune”. 
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Multi-channel blind source separation (BSS) [6 ,7 ]  is another 
group of techniques that can be used for partial separation. These 
are iterative methods that work under the assumption that all the 
sources are statistically independent. It may be questioned whether 
this assumption holds for oeerlapping partials in mixtures of har- 
monic instruments. Though these methods may work well for 
broad band signals, our experiments with such methods on nar- 
row band overlapping panials in isolation have shown convergence 
problems, and accordingly no proper separation. 

We devise a new method for energy separation of overlapping 
panials in multi-channel mixtures; drawing benefits from sinu- 
soidal modeling and multi-channel techniques. This method works 
indi\~idually on partials, i t  is compurationally fast, and it can be 
used in conjunction with many existing source separation meth- 
ods. 

In this paper, first we describe our method i n  section 2. Then, 
section 3 discusses some experimental results, followed by section 
4 on measurements of the separation quality. In section 5 we draw 
the conclusions. 

2. SEPARATION OF OVERLAPPING PARTIALS 

2.1. Signal representation 

In a general source separation setup, the only k n o w  signals are 
the sensor signals xm[t], where m is the sensor index. We use 
the short-time Fourier transform (STFT) in order to represent the 
signals in time and frequency X,[w, t ] .  Each of these signals is 
a superposition of filtered source signals. In a general scene with 
A4 sensors and N sources, this can be wrinen in matrix notation 
a s X  = HS : 

H i i [ ~ l  . . .  HINIWI ] [ Si[;,il] [ XI‘;. ] = [ (1)  

XAf[d,t] Hnrijw] _ ’ ’  HnrN[w]  S~[ir.,f] 
where S, [w, t] are the source signals and H is the A< x A’ mixing 
matrix. Each of the elements H,,,,[wj of this matrix is a filter 
that describes the filtering between the n’th source and the m‘th 
sensor. We assume that the scene is static and that these filters are 
time invariant. 

The STFT representation is well suited for the estimation of 
parameters in sinusoidal models and we use this property in order 
to detect partials in the signals. However. a sinusoidal trajectory is 
simply a single sinusoid with time-varying frequency (and ampli- 
tude), corresponding to a thin line in the time-frequency represen- 
tation. This only describes the ridge of a partial and contains no 
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information about the sidebands, i.e. the slopes at the frequencies 
below "d above. These sidcbands are important for the natural- 
ness of a sound. Moreover, id a frequency band that contains sev- 
eral overlapping partials, there will be several such ridges that may 
be impossible to distinguish from each other. We therefore need 
to extract and model signal components that contain both the par- 
tial ridges and their sidebands. In contrast to traditional sinusoidal 
modeling, we are not estimating a very accurate frequency trajec- 
tory for the ridge, but rather n rough region in the time-frequency 
representation that will contain the ridge and its sidebands. 

Effectively we divide the entire time-frequency plane into non- 
overlapping regions Ri indered by i. Each such region can be 
described by the corresponding indicator function I,[w, I.] which 
equals 1 for [w, t]  E Ri  and 0 elsewhere. Due to the typical shapes 
of these regions and the fact that each such region may contain a 
mix of many partials from different sources we will refer to these 
as "partial sausages", or simply sausages. Since the sausages are 
non-overlapping and span the whole time-frequency plane, each of 
the sensor signals may be written as a sum of sensor sausages: 

: 

." . . .  

where each sensor sausage is simply the product of the correspond- 
ing sensor signal and the indicator function: 

P<",[ld> t] == I i [ W ,  t]X,[U, t ]  (3) 

Basically, each sensor sausage may either contain partial(s) fmm 
one source. or a mix of overlapping partials from several sources. 

We employ grouping principles based on harmonic relations 
181 and localization cues 191 in order to determine the total number 
of sources N ,  as well as to detect which sources that contribute 
energy in each of the sausages. We thus have a mapping between 
sausages and sources. For each of the sources we then know which 
sausages contain partials from that particular source. Clearly, if 

. . 'each of the sensor sausages only contains partials from one of the 
sources, separation is straightfonvdrd. The time-frequency energy 
of each sausage is simply assigned to that corresponding source. 
Any source is then the union of the sausages that contain its par- 
tials. 

When the sausages contain overlapping partials from different 
sources we need to decompose each sensor sausage into its source 
components, namely the original source sausages or source par- 
tials that the sensor sausage is a superposition of. Separation is 
then achie\,ed by working with these source sausages rather than 
the mixture sausages, i.e. we assign these source sausages to the 
different sources. 

. 
: 

Combining ( I )  and (3) we get [ p ~ ' " t ' ] = I < [ w , t , [  Hi1 j . . .  '., H ~ N  j I[ "'";'I] (4) 

For most harmonic instruments the partials are narrow band. This 
means that over the frequency range of one sausage the mixing 
filters Hmn(li)  can be assumed as constant complex numbers. We 
therefore omitted the parameter w in (4). We denote the constant 
mixing matrix corresponding to the i'th sausage by Hi. 

When the number of sources that are overlapping in a sensor 
sausage is not greater than the number of sensors and the corm 
sponding mixing vectors (mws of Hi) are linearly independent 

P;nr[.;,tl IInri . . .  H A I N  5"[iu.;t] 

it is possible to separate the overlapping partials in the sensor 
sausages to obtain the original source partials. By estimating the 
left pseudo-inverse G, of H, and applying this on both sides of 
(4) we get: 

Rii[w,tl Pi1 [w, tl s1 [w, tl 

R ~ N  [U, PiAI[U, t]  
[ i ] = G i [  1 ]=I , [w , t I [  S N b ,  j tl ] ( 5 )  

where R;, are the separated sausages. Each Ri, then represents 
the contribution of a single source S, in the sausage region I,. To 
find the separated sausages, we need to estimate the matrix Gi for 
each of these sausage regions. 

2.2. Similarity of partial envelope shapes 

From psychophysics it is known that the human hearing sense uses 
many cues in order to group together different simple sound com- 
ponents into one complex sound. In particular, looking at the par- 
tials of one single note from a harmonic instrument, one can con- 
sider the harmonic relation, the common onset, offset, amplitude 
modulation (AM), and frequency modulation (FM). These are all 
important cues for grouping. 

I , . ,  L ,  
00 0 %  % I 5  I 2 1  1 I 6  a .% I 

,,m,r, 

Figure 1: Energ) emrlopes offirst 40 panials of a trumpet nofe. 

For any sausage, let us denote it A, we define the energy en- 
\,elope Ea[t] and normalized energy envelope Ea[t] as follows: 

The sausage energy envelope (6) preserves all of the abovemen- 
tioned cues except for the FM. Figure 1 shows the normalized en- 
ergy envelopes of the first 40 partial sausages of a trumpet note. 
The graphs are slightly shifted vertically in order to bener show 
the resemblances. 

From the mapping we have found between the sensors and 
the sausages we know which sausages that contain partials for any 
given source. Since all the partial envelopes of a harmonic sound 
have similar shapes, any sensor sausage containing energy !?om 
only one source can be used in order to predict the envelopes for 
all the partials of that corresponding source. We call these the 
predicted sausages Q,,, The envelopes EQ,,, of these are used 
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as predictions for the envelopes  ER^.^ of the separated sausages 
R,, that we are looking for. Using (5 )  we find the G ,  that gives 
R,, with envelopes En,, as close as possible to the predicted en- 
velopes EQ,,'s. We define the envelope shape similarity 4 be- 

Figure 2: Partial envelope sirnilorir). relative 10 the frsr partial 
(lop), ond relorise to rhefffh neighbour partial (bottom). 

tween two sausages A and B as the inner product of their normal- 
ized energy envelopes: 

This measurement is in the range between 0 and 1, where 1 means 
that the two normalized envelopes are identical. Figure 2 s h o w  
this similarity measure for the 40 first partials shown in figure I .  
The top graph shows the similarity of each partial relative to the 
first partial, p(S,: SI). The bottom plot shows the similarities be- 
tween the 40 partials and their5th neighbour partials, p(Si, Si+5). 
Even though the similarity relative to the first partial decreases 
as the partial index increases, the local similarity remains high. 
Of course this depends on the type of instrument and note being 
played, but for harmonic instruments it is reasonable to assume a 
significant correlation between the envelopes of the different par- 
tials of a note. 

For a given sausage index i we find the Gi that maximizes the 
total sausage shape similarity measure given by: 

Using this Gi in ( 5 )  the sensor sausages Pjm are separated into 
source sausages Ri,. 

If the sensors are placed in a free field with little reverber- 
ation, then the mixing filters will be approximately pure delays. 
In this case it is possible to estimate the complex elements of the 
matrix Hi for each sausage, drawing knowledge from the predic- 
tion sausages. In situations with no reverberation at all, one can 
directly compute the (pseudo-)inverse G ,  and use this directly in 
(5). In  more complex scenes, we use this rough estimate of Hi 
as the starting point for the iterative algorithm that maximizes the 
similarity (8). 

3. RESULTS 

Figure 3 shows the (unnormalized) energy envelopes for a sausage 
region containing two overlapping partials, coming from a violin 

with vibrato and a trumpet. The top graph shows the envelopes 
Ep of the two sensor sausages (left and right sensor). The second 
row shows the envelopes EQ ofthe two predicted sausages. These 
envelopes are deduced from neighbouring non-overlapping sensor 
sausages. The third row shows the envelopes ER of the separated 
sausages. Finally, the bottom graphs show the envelopes Es of the 
original source sausages I,[w, t]S, [w, t ] .  which represent the per- 
fect separation. Of course these two latter are only known when 
one knows the original source signals, as in our research setup. 
They are shown here just for comparison. Surprisingly, we note 
that the separated sausages (third row) are better (both scale and 
shape) than we could expect. In other words. they are closer to the 
perfect source partial envelopes (bottom) than to the predicted en- 
velopes we were looking for (second row). In  particular we notice 
that the vibrato and strong amplitude modulation of the Yiolin has 
been preserved (left), whereas this has been correctly removed for 
the trumpet (right). 

m**p 1 nr.*glz 

Figure 3: Sausage e,n~elopes, fmrii top to horto~rr: cerisor sousages 
contairiisp overlappinp parrials (P's), pedicred sausages fmsr 
neighbouring rzort-overlapping parlialc IQ's), separared sausages 
(R's), and original source sorrsages (S'k). 

So far we have only been concemed with the energy envelopes 
of the sausages. Since we are working in the STFT domain all 
the sausages are complex. Whdl is actually much more important 
for the perceptual quality of the separation is the phase trajectory 
of the separated partials. Partials that are slightly out of tune are 
typically much more annoying than fluctuations in  the energy en- 
velopes. Figure 4 shows phase differences relative to the origi- 
nal source sausages that represent perfect separation. The figure 
layout is the same as i n  fig. 3. In the top row we see that the 
sensor signals have quite random phase in relation to the origi- 
nal sources. This is expected since there are se\,erdl o\,erlapping 
partials. The second row shows the phase difference between the 
predicted sausages and the source sausages. Naturally, these pre- 
dicted sausages have been deduced from sausages that lie in differ- 
ent frequency bands. At best the phase difference is linear (taking 
into account the phase wrapping at %T) as seen in the right hand 
graph. This depends on the individual instrument and mixing, and 
is therefore not useful i n  general. The third row shows the phase 
difference between the separated sausages and the original source 
sausages. We see that the phase is almost constant. Thismeans that 
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there are almost no phase distortions (except for a pure delay). The 4.2. Phase error 
large phase error seen at the end of the right figurecorresponds to a 
time interval where the source is silent. This means that the phase 
e m r  is less significant in this interval. At the bottom we show the 

we denote Ihe phase difference between sausages A and as 
d A B I W , t l .  The weighted mean Of this 

phase errors of the perfect source sausages relative to themselves 
(zero by definition). 

Figure 4 Plurre ermrs fmni top to Dorroni: sensor sausages (P’s), 
predicted suusoge5 (Q’sJ, seprured suusages (R5J. arid original 
source sausages (S’sJ. 

4. QUALITY MEASURES 

It tums out that for the perceived quality of separation, the ac- 
curacy of the sausage envelopes is not the most important. As a 
matter of fact a partial Ihdf is much too strong (scaling error) or 
slightly out of tune (phaselfrequency error) is normally perceived 
as much more annoying than changes in the shape of its normal- 
ized energy envelope. However. it is possible to predict the nor- 
malized envelope, and this is why we use this i n  the similarity 
measurement (8) in order to demix the overlapping partials. The 
hope is that the scaling and phase of the Qin that we get from ( 5 )  
are correct to a good degree of approximation, as seen in fig. 3 and 
4 respectively. 

4.1. Scaling ermr 

Depending on the physics of a harmonic instrument, the partials 
have different energy levels. However, these levels are normally 
somewhat interrelated, and normally follow a general trend. The 
level typically decreases with increa5ing frequency, and one par- 
tial is not likely to be very,much stronger than the neighbouring 
partials. 

With a properly chosen windowing function in the S T R ,  the 
total energy of a sausage .4 is given by 

(9) 

By comparing the strength of all the partials in the separated sig- 
nals we detect separated partials that are clearly wrong and use 
another method such as partial shape smoothing or partial cancel- 
lation 151 for the sausage under consideration. 

In research experiments where the original source signals are avail- 
able, the variance of the phase error ~ R S  between a separated 
sausage R and a corresponding source sausage S can be used as a 
quantitative measurement for the quality of this separation. In our 
experiments we have achieved phase errors with very small vari- 
ance as seen in fig. 4. Partials containing vibrato can effectively be 
separated from partials without frequency modulations. 

5. CONCLUSIONS 

We have presented a new method for separation of overlapping 
partials in multi-channel audio mixtures. This method can accu- 
rately recover the amplitude and frequency modulation of the orig- 
inal sources from the mixtures. It can be used in conjunction with 
existing source separation methods. Sound examples can be found 
at:http://lcavbww.epfl.ch/~viste/waspaa03 
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