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ABSTRACT

Color image quality depends on many factors, such as the initial capture system and its color image processing,
compression, transmission, the output device, media and associated viewing conditions. In this paper, we are
primarily concerned with color image quality in relation to compression and transmission. We review the typical
visual artifacts that occur due to high compression ratios and/or transmission errors. We discuss color image
quality metrics and present no-reference artifact metrics for blockiness, blurriness, and colorfulness. We show
that these metrics are highly correlated with experimental data collected through subjective experiments. We
use them for no-reference video quality assessment in different compression and transmission scenarios and again
obtain very good results. We conclude by discussing the important effects viewing conditions can have on image
quality.

Keywords: Compression artifacts, transmission errors, image and video quality metrics, blockiness, blurriness,
colorfulness, jerkiness, JPEG2000, MPEG-4, viewing conditions

1. INTRODUCTION

The literature relating to color image quality is vast, and encompasses such different research areas as camera
design and visual psychology. Any “good” image requires an adequate capturing system where optics and sensors
are well matched. The image processing chain from raw sensor data to image data that represent the desired
color appearance on a defined output medium under defined viewing conditions has been studied extensively.
There are several international standards that define image-state architecture,1 standard image encodings,2, 3

and means to transform between them or to output devices.4 Content-specific color image processing algorithms,
such as adaptive tone reproduction,5 color constancy,6 and retinex,7 inspired by the way the human visual
system processes visual information, have added to the overall quality of digital imaging results. In short, most
of today’s digital image capture systems are capable of producing acceptable, if not excellent color images and/or
videos.

However, images are often compressed for storage or for transmission over a network. High compression
rates can only be achieved with “lossy” compression schemes, where part of the original image data is thrown
away in the compression process. Additionally, bit errors and packet losses can occur when transmitting the
bitstreams over a network. As a result, the decompressed image or video at the destination output device may
contain visible artifacts that are detrimental to the overall quality. In Section 2, we discuss some common
compression and transmission artifacts. In Section 3, we outline approaches to measure the resulting artifacts.
In Section 4, we describe three artifact metrics for blockiness, blurriness, and colorfulness. Their applicability
as quality predictors is discussed in Section 5. In Section 6, we describe how we tested their performance for
quality prediction in video applications.

No discussion on artifacts, either due to wrong capture and processing parameters, or due to compression and
transmission, is complete without considering their visual impact. One of the parameters often overlooked in
the coding community are the viewing conditions of the output. For example, a perfect image on one computer
screen might not be acceptable on a different monitor. In Section 7, we discuss different output and viewing
condition parameters and show how they influence the appearance of an image or video.
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2. ARTIFACTS

Due to their large data size, images and video have to be compressed for storage and transmission. Lossy
compression is typically required for a substantial reduction of the data rate. This is usually achieved by
transforming the image data to a domain suitable for compression and applying quantization to the resulting
transform coefficients. Examples of such transforms include the Discrete Cosine Transform (DCT), as used in
JPEG or MPEG compression standards, and the Discrete Wavelet Transform (DWT), as used in JPEG2000.8

Depending on the specific compression algorithm, this can introduce a variety of artifacts.9 We list some of the
more common ones here:

• The blocking effect or blockiness refers to a block pattern in the compressed image or video (cf. Figure 1).
It is due to the independent quantization of individual blocks (usually of 8×8 or 16×16 pixels in size) in
block-based DCT coding schemes, leading to discontinuities at the boundaries of adjacent blocks. Due to
the regularity and extent of the resulting pattern, the blocking effect is easily noticeable.

• Blurriness manifests itself as a loss of spatial detail and a reduction of edge sharpness (cf. Figure 1). It is
due to the suppression of high-frequency coefficients by coarse quantization, which is applied in almost any
lossy compression scheme. It can be further aggravated by deblocking filters, which are sometimes used in
the decoder to reduce the above-mentioned blocking effect.

• Ringing is fundamentally associated with Gibbs’ phenomenon and is thus most evident along high-contrast
edges in otherwise smooth areas. It is a direct result of quantization leading to high-frequency irregularities
in the reconstruction. Ringing and blurriness constitute the main artifacts of wavelet compression.

• Color bleeding is the smearing of the color between areas of strongly differing chrominance. It results from
the suppression of high-frequency coefficients of the chroma components. Due to chroma subsampling,
color bleeding extends over an entire macroblock. Many observers perceive this also as a loss of colorfulness
(cf. Figure 4).

• Jerkiness represents artifacts of motion rendition in video, for example due to a varying or reduced frame
rate chosen by the encoder. It can also occur in live streaming over a network due to missing or erroneous
parts of the bitstream.

• Flickering appears when a video has high texture content. Texture regions are compressed with varying
quantization factors over time, which results in a visible flickering effect.

3. QUALITY METRICS

Depending on the compression ratio, these artifacts are more or less severe. In order to measure and control their
visual impact, reliable quality metrics are needed. However, the accurate measurement of quality as perceived
by a human observer is a great challenge, because the amount and visibility of the artifacts strongly depend on
the underlying image content.

Subjective experiments, which to date are the only widely recognized method of determining actual perceived
quality, are complex and time-consuming, both in their preparation and execution. Basic fidelity measures like
mean-squared error (MSE), peak signal-to-noise ratio (PSNR), or Delta E (∆E) on the other hand may be simple
and very popular, but they do not necessarily correlate well with perceived quality. Additionally, these measures
assume that there exists a reference in the form of an “original” to compare to, which restricts their usability.
Thus, reliable automatic methods for visual quality assessment are needed. Ideally, such a quality assessment
system would perceive and measure image or video impairments just like a human being. Two approaches can
be taken:

• The “psychophysical approach”, which is based on models of the human visual system.10 Their general
structure is usually determined by the modeling of visual effects, such as color appearance, contrast sensi-
tivity, and visual masking, to name a few. Due to their generality, these metrics can be used in a wide range



of video applications; the downside to this is the high complexity of the underlying vision models. Besides,
the visual effects modeled are best understood at the threshold of visibility, whereas image distortions are
often supra-threshold.

• The “engineering approach”, where metrics make certain assumptions about the types of artifacts that are
introduced by a specific compression technology or transmission link. Such metrics look for the strength
of these distortions in the video and use their measurements to estimate the overall quality.

Quality metrics can be further classified into the following categories:

• Full-reference (FR) metrics perform a direct comparison between the image or video under test and a refer-
ence or “original”. They thus require the entire reference content to be available, usually in uncompressed
form, which is quite an important restriction on the usability of such metrics. Another practical problem
is the alignment of the two, especially for video sequences, to ensure that the frames and image regions
being compared actually correspond. As mentioned above, fidelity metrics such as MSE/PSNR and ∆E
belong to this class as well.

• No-reference (NR) metrics look only at the image or video under test and have no need of reference
information. This makes it possible to measure the quality of any visual content, anywhere in an existing
compression and transmission system. The difficulty here lies in telling apart distortions from regular
content, a distinction humans are able to make from experience.

• Reduced-reference (RR) metrics lie between these two extremes. They extract a number of features from
the reference image or video (e.g. spatial detail, amount of motion). The comparison with the image/video
under test is then based only on those features. Additionally, image metadata as available with some file
formats (e.g. EXIF, JPEG2000) can also be used. This makes it possible to avoid some of the pitfalls of
pure no-reference metrics.

4. NO-REFERENCE ARTIFACT METRICS

Our focus in this paper are no-reference (NR) metrics because of their versatility and flexibility. Since no
information about the reference is required, quality can be measured even in cases when the reference is not
accessible, for example at the receiver side of an Internet streaming transmission, or completely unavailable,
such as an image taken with a digital camera, where the camera-internal processing parameters are unknown
and the metadata lost. Furthermore, there are no alignment issues whatsoever. To be able to measure quality
in the absence of reference information, NR metrics must make certain assumptions about the types of artifacts
that are introduced by a specific compression technology or transmission link. They consequently look at the
strength of the different artifacts in the image or video.∗ The separate measurements can then be combined into
an estimate of overall quality (see Sections 5 and 6).

4.1. Blockiness Metric

Our no-reference blockiness metric assumes that the blocks introduced in the image form a regular grid.11 This
regularity becomes apparent by analyzing the image in the Fourier domain. We first compute horizontal and
vertical difference signals of each row and column, respectively. By applying 1-D discrete Fourier transforms
to these signals, we compute the power spectra and average them over all rows and columns, respectively. An
example of such an average 1-D spectrum obtained from a JPEG-compressed image is shown in Figure 2. The
peaks in this averaged spectrum are due to periodic block structures. They appear at specific locations in
the spectrum, depending on the block size (e.g. at multiples of N/8 for blocks of size 8×8 pixels, where N
is the DFT/image size). The power spectrum of the image without the blocks at the locations of the peaks
can be approximated by median-filtering these curves. The overall blockiness measure is then computed as the
difference between these two power spectra at the locations of the peaks. To further enhance the measurement,
the integration of visual masking effects has also been proposed.12

∗ While the algorithms described here were designed primarily as no-reference metrics, they can also be used in a full-reference
scenario; in that case, the assumptions or estimations of the reference image would be replaced by the actual values.
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Figure 2. Blockiness metric: 1-D power spectrum of horizontal
differences, averaged over all rows, for a JPEG-encoded image.
The circles mark the spectrum peaks due to the 8× 8-block
structure in the image. The height of these peaks relative to the
median-filtered version of the spectrum is used as a measure of
blockiness.
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Figure 3. Blurriness metric: One row of a JPEG2000-encoded
image (solid line). Note the smearing of edges compared to the
sharper original (dotted line). The circles indicate the signifi-
cant edges detected, the stars and gray patches mark the local
minima and maxima around the edge. The edge width between
these local extrema is used as a measure of blurriness.

4.2. Blurriness Metric
Our technique for measuring blurriness is based on the assumption that most significant edges in an image,
which often represent borders of objects, are sharp. Compression has a smearing effect on these edges, the
extent of which our blurriness metric attempts to measure. The algorithm is summarized as follows. First, an
edge detector (e.g. a Sobel filter) is applied to the luminance component of the image. Thresholding the edge
gradients removes noise and insignificant edges. The start and end positions of each significant edge in the image
are defined as the locations of the local intensity minimum and maximum closest to the edge. The distance
between these two points is identified as the local blur measure for this edge location. An example for an image
row is illustrated in Figure 3. The global blurriness for the whole image is estimated by averaging the local blur
values over all significant edges found. This metric was confirmed to be a reliable predictor of perceived blur
both for images filtered with Gaussian low-pass filters and JPEG2000-encoded images.13

4.3. Colorfulness Metric
Measuring the perceived color quality of an image is extremely difficult. The quality of the reproduction depends
on content, media and viewing conditions (see Section 7). On the other hand, compressing images can also
reduce their colorfulness at high compression rates. Suppressing the high-frequency coefficients of the chroma
components not only introduces color bleeding, but also makes images appear less colorful, especially if an image
contains a lot of chromatic details (two examples are shown in Figure 4). We have developed a metric for such
artifacts. Our measure for colorfulness is based on the mean and standard deviations of two axes in a simple
opponent color representation with α = R − G and β = 1

2 (R + G) − B. The metric is defined as follows:14

M =
√

σ2
α + σ2

β + 0.3
√

µ2
α + µ2

β

where σα, σβ and µα, µβ are the standard deviation and mean of the pixel cloud along directions α and β,
respectively. For 84 test images, the correlation of this metric with experimental data on perceived colorfulness
was 95%. Note, however, that while our metric is capable of predicting the perceived colorfulness, it does not
provide a quality prediction and as such cannot be used directly for no-reference quality assessment. It could be
applicable in a reduced-reference framework where the colorfulness of the original image is known.



5. IMAGE QUALITY PREDICTION

Once a metric has been designed, its performance as an image quality predictor has to be evaluated. This
can only be done by comparing the results of the metric to observer ratings. How to design an appropriate
subjective experiment is not trivial, and it is important not to underestimate this task.15 Indeed, determining
the correct type of experiment, such as rank-ordering, categorical, forced choice, etc. that is most appropriate is
very important. Additionally, the number of visual samples, the viewing conditions (see Section 7), the number
and experience of the observers all influence the results. Another critical parameter of the subjective experiment
are the instructions given to the observers. The ISO is working on an international standard for still image quality
evaluation (ISO/DIS 20462-216–18), and the ITU has established standard test procedures for subjective video
quality evaluations (ITU-T Rec. P.91019 and ITU-R Rec. BT.50020). Consequently, if one metric is compared to
another, the results are only meaningful if they are applied to the same dataset under the same test conditions
with the same instructions, as was done for example by the Video Quality Experts Group (VQEG).21, 22

Here we summarize the results of an evaluation of the prediction performance of the NR blurriness metric
as a predictor of overall perceived image quality.23 The LIVE Image Quality Assessment Database24 was used
for these tests. The images in this database were created by compressing 29 color images (typically of size
768×512 pixels) using Kakadu’s JPEG2000 encoder. Compression ratios range from 7.5 to 800, for a total
of 169 compressed images. The subjective experiments were conducted in two separate sessions with 29 and
25 observers, respectively; the original uncompressed images were included in both. Observers provided their
quality ratings on a continuous scale from 1 (lowest quality) to 100 (highest quality).

As shown in Table 1, PSNR is already an excellent predictor of perceived quality for this database: the
correlation with the mean opinion score (MOS) is about 91%. These good results can be attributed largely to
the fact that the database contains exclusively images created with a single type of encoder (JPEG2000) and
thus contain mainly varying degrees of the same distortions.

The hypothesis for using the NR blurriness metric from Section 4.2 is that the quality prediction is a simple
non-linear transform of the measured blur for this dataset. To test this, we separated the LIVE test images into
a training set and a test set, using 100 different random divisions of the dataset. As shown in Table 1, our metric
achieves correlations of around 85% with MOS on the test sets, which is quite a good prediction performance
for an NR metric.

A closer look at the data reveals that the most significant outliers are due to two specific pictures, namely one
close-up and one macro shot, both with very small depths of field. Since our blurriness metric does not distinguish
between blur as a compression artifact and any other blur in the image, its MOS predictions for these images are
too low in comparison to the observers’ ratings, who do not consider this type of blur a quality degradation. In
one form or another, this problem is intrinsic to any no-reference metric when its assumptions about the source of
the artifacts are violated. An added detector for distinguishing central objects from the potentially out-of-focus
background could help alleviate this problem when using our metric for the assessment of compression artifacts.
In fact, when these two images are removed from the test set, the prediction performance of our NR metric
approaches that of PSNR (see Table 1).

Table 1. Prediction performance of the proposed quality metric. The bottom row refers to the exclusion of the images with very
small depth of field (see text), an effect that is difficult to distinguish from compression-induced blur for a no-reference metric.

Linear Rank-order Prediction
correlation correlation error

PSNR 91% 92% 9.7
NR quality metric 86% 84% 12.1

NR metric w/o outliers 90% 88% 10.1



6. VIDEO QUALITY PREDICTION

The metrics described above were also used for no-reference video quality assessment. Here we briefly present
experiments and results for two sets of applications, namely video streaming over a packet network25 and mo-
bile/wireless video transmission.26 In addition to video compression artifacts, we also consider the effects of
transmission of the compressed bitstream over a network.

The test conditions are described in more detail in the respective sections below. They were chosen so as to
produce typical video quality for each of the two applications and at the same time achieve a good distribution
of qualities for the different scenes. The source sequences were chosen to cover a wide range of typical content
for streaming applications, such as news, sports and music video clips. Furthermore, they were selected to span
a wide range of coding complexity. Specifically, two one-minute test sequences were created by concatenating
scenes taken from clips used in previous tests by MPEG27 and VQEG21 as well as other sources.

The subjective ratings obtained in the experiments (see below) were again used to tune and evaluate the
MOS predictions based on the no-reference metrics for blockiness and blurriness described above in Section 4. In
addition to these two spatial image metrics, which are computed on a frame-by-frame basis, a jerkiness metric
is used to specifically take into account temporal distortions, such as frame drops or video freeze. It is based
on an estimate of the instantaneous frame rate and the motion content in the video. All three artifact metrics
are computationally very light, a very useful property for video quality prediction. This makes it possible to
compute them in real-time on a standard PC, in parallel to decoding and displaying the video.

Due to the different types of artifacts that are produced by the codecs used in the tests, individual mappings
were determined for each codec separately. For example, the MOS prediction for the MPEG-4 videos relies
mainly on the blockiness metric. Tuning was again performed on a randomly selected half of the data, and the
other half was used for evaluation in each case.

6.1. Subjective Experiments

Subjective assessment was based on ITU-R Rec. BT.50020 and ITU-T Rec. P.910.19 We used Single Stimulus
Continuous Quality Evaluation (SSCQE), which is specified in ITU-R Rec. BT.500, as the assessment method
for our subjective experiments. In an SSCQE session, a series of video sequences is presented to the viewer. The
video sequences may or may not contain impairments. Subjects evaluate the instantaneous quality in real time
using a slider with a continuous scale. The SSCQE method yields quality ratings at regular time intervals and
can thus capture the perceived time variations in quality. The ratings are absolute in the sense that viewers are
not explicitly shown the reference sequences. This corresponds well to an actual home viewing situation, where
the reference is also not available to the viewer. In our experiments, the slider position was recorded every 50 ms,
on a scale from 0 (“bad”) to 100 (“good”).

For our test setup, we found subjects to be comfortable at a viewing distance of 3-4 times the height of the
video picture, which corresponds to about 30-40 cm in our setup. Since mobile devices and the majority of PC’s
sold today have an LCD screen, the monitors used in the subjective assessments are also LCD screens.25, 26

20 non-expert viewers – mostly university students – participated in each test. They were screened for normal
visual acuity or corrective glasses and normal color vision.

6.2. Video Over Packet Network

The purpose of this test was to simulate video streaming over a packet network such as the Internet. At the
compression stage, the following encoders and video formats were used:

• Windows Media Video 8;∗

• Real Video 8;∗

• ISO MPEG-428 (Microsoft implementation).†

∗ Version 8 of the Real and Windows Media codecs was the latest version at the time of the tests.
† To facilitate streaming with the tools at hand, the ISO MPEG-4 codec provided with the Windows Media Encoder was used.

It encapsulates the MPEG-4 stream inside the WMV file format.



These codecs are probably the most popular ones for Internet streaming applications. At the transmission stage,
an IP network simulator was used to simulate different network conditions. A large number of trials was required
to obtain representative test sequences. Specifically, different packet loss rates (PLR) were selected that would
result in test videos with noticeable artifacts, but without completely destroying the video. The test conditions
are summarized in Table 2. Videos had a frame size of 360×288 pixels and a frame rate of 25 fps.

Table 2. Test conditions for video over packet network.

# Codec Bitrate PLR

1 WMV8 256 kb/s –
2 RV8 256 kb/s –
3 RV8 256 kb/s 2%
4 WMV8 512 kb/s –
5 RV8 512 kb/s –
6 RV8 512 kb/s 3%
7 MPEG-4 512 kb/s –

At the receiving end, the video was decoded while keeping track of the exact timing of frame display as
encountered during playback (including picture freeze and playback irregularities). This allowed us to reproduce
these temporal distortions during the subjective experiments.

The prediction performance is summarized in Table 3. The overall quality of the MOS predictions is char-
acterized by a correlation of 78% and an average prediction error of 9.1 (on the 0-100 SSCQE scale), which is
roughly the same as the confidence interval size in the subjective experiments. Quality prediction works well for
all three codecs, considering that it is based only on no-reference metrics. A comparison with PSNR or other
full-reference metrics is not possible here because the encoders and the packet loss simulations introduced frame
rate variations and delays in the video which made an alignment with the source sequences impossible.

Table 3. MOS prediction performance

Linear Rank-order Prediction
correlation correlation error

Real Media 76% 76% 10.2
Real Media (no PL) 84% 83% 9.1

Windows Media 84% 85% 7.7
MPEG-4 83% 84% 6.8
Overall 78% 79% 9.1

One problem is the noticeable deterioration of the prediction accuracy with the inclusion of conditions with
packet loss. The reason for this appears to be that people respond rather slowly to the sudden effects packet
losses have on the video – it takes them some time to realize that the video has frozen. This gradual viewer
response obviously cannot be taken into account with memoryless metrics. Modifying the metric predictions to
produce the same gradual response could be done quite easily; on the other hand, an immediate response of the
metrics in such a case may be preferred in monitoring applications.

6.3. Video Over Wireless

In this experimental setup we simulated the transmission of video sequences over a WCDMA wireless channel.
The video source was first compressed using MPEG-4∗ or Motion JPEG2000.†,8 Both coding standards include
a number of tools to improve their resilience to transmission errors, which makes them well suited for mo-
bile/wireless video applications. By exploiting inter-frame redundancy, MPEG-4 has a higher coding efficiency
at the cost of a higher complexity. The dependencies between coded frames and the resulting propagation of

∗ MoMuSys reference software implementation,29 available for download from http://megaera.ee.nctu.edu.tw/mpeg/
† Kakadu software, available for download from http://www.kakadusoftware.com/



errors across consecutive frames also imply a lower error resilience. Conversely, Motion JPEG2000, which is
based on intra-frame coding, has a lower coding efficiency at the benefit of a reduced complexity. Additionally,
it is more resilient to transmission errors, because each frame is coded independently.

After compression, H.22330 was used for packetization and cyclic redundancy check (CRC) of the bitstream.
Transmission errors were introduced using bit error patterns representative of WCDMA.31 We selected two
distinct error patterns with a Bit Error Rate (BER) of 10−4. The random nature of transmission errors was
simulated by applying different circular shifts to the bit error patterns. Again, a large number of trials was
required to obtain representative test sequences.∗

The test conditions are summarized in Table 4. The sequences were downsampled spatially and temporally
as specified in order to accommodate the low bitrates. Contrary to what was observed in the tests with packet
losses (Section 6.2), the bit errors did not lead to dropped frames or delays in the decoded video.

Table 4. Test conditions (MJ2K = Motion JPEG2000).

# Frame size Frame rate Codec Bitrate Bit Error Rate

1 180×144 4 fps MPEG-4 64 kb/s —
2 180×144 4 fps MJ2K 64 kb/s —
3 180×144 4 fps MJ2K 64 kb/s 10−4 (I)
4 180×144 4 fps MJ2K 64 kb/s 10−4 (II)

5 180×144 6 fps MPEG-4 128 kb/s —
6 180×144 6 fps MJ2K 128 kb/s —
7 180×144 6 fps MJ2K 128 kb/s 10−4 (I)
8 180×144 6 fps MJ2K 128 kb/s 10−4 (II)

9 360×288 8 fps MPEG-4 384 kb/s —
10 360×288 8 fps MJ2K 384 kb/s —
11 360×288 8 fps MJ2K 384 kb/s 10−4 (I)
12 360×288 8 fps MJ2K 384 kb/s 10−4 (II)

The prediction performances are summarized in Table 5. The MOS prediction works very well – it is charac-
terized by correlations of around 90%, even higher than what was obtained in the tests with video over a packet
network (Section 6.2), despite the fact that transmission error effects are not always measured correctly by the
three artifact metrics. For comparison, PSNR correlation with the same MOS data is only around 40%. This
shows that no-reference metrics, even rather simple ones, can be very effective in estimating perceived quality if
they are designed to measure application- and codec-specific artifacts.

Table 5. MOS prediction performance.

Linear Rank-order Prediction
correlation correlation error

MPEG-4 91% 89% 8.2
M-JPEG2000 93% 89% 7.1

Overall 93% 89% 7.4
PSNR 39% 43% —

∗ While this setup is a simplification over implementing the complete WCDMA protocol stack and air-interface, this methodology
is similar to the one used by 3GPP.32



7. VIEWING CONDITIONS

As mentioned previously, the viewing conditions have a significant influence on the appearance of an image or
video, because they can amplify or diminish the visibility of artifacts. Thus, standard viewing conditions have
been established for critical evaluations of images viewed on screen or in print.33 Subjective evaluation stan-
dards16–20 define the viewing conditions under which the tests should take place. Here, we review the parameters
that influence appearance on a color monitor. For more information about print viewing conditions, refer to
ISO 3664.33 Note that in general, quality requirements for prints are a lot higher than quality requirements for
images or videos viewed on a screen.

7.1. Visual Phenomena

There are many visual phenomena that influence the appearance of images on a monitor, but here we restrict
the discussion to two: contrast sensitivity and adaptation. Contrast sensitivity is the ability of the human
visual system to distinguish changes in luminance or chromaticity. Any given contrast sensitivity depends on
the luminance level of the contrasting stimuli, their spatial frequency, their chromaticity, and on the state of
adaptation of the human observer.

Contrast is usually modeled with the Weber law C = ∆L
L , where ∆L is the difference in luminance between

a stimulus and its surround, and L is the luminance of the surround. The threshold contrast, i.e. the minimum
change in luminance necessary to detect a change, remains nearly constant over the luminance range important
for imaging applications, i.e. from 10 - 1000 cd/m2. However, the sensitivity to contrast also depends on the
spatial and temporal frequency, and the chromaticity of the stimuli (see Figure 5).
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Figure 5. Approximations of achromatic (left) and chromatic (right) spatio-temporal contrast sensitivity functions.34–36

The contrast sensitivity behavior of the human visual system has been incorporated into JPEG and MPEG
compression standards: High-frequency components are suppressed first; the lower chromatic contrast sensitivity
is taken into account by subsampling the chroma. The assumption is that at a given compression rate, the
artifacts introduced in such a way are not visible, i.e. the decoded image contains errors that are small and
of low enough contrast to be classified as invisible. This is known as visually lossless compression. Of course,
the definition of “small” depends on the output device and viewing conditions, such as display resolution and
viewing distance. “Low contrast” depends on the monitor and ambient illuminant conditions discussed below.

Adaptation can be considered as a dynamic mechanism of the human visual system to optimize the visual
response to a particular viewing condition. Dark and light adaptation are the changes in visual sensitivity
when the level of illumination is decreased or increased, respectively. Chromatic adaptation is the ability of the
human visual system to discount the color of the illumination to approximately preserve the appearance of an
object. It can be observed by examining a white object under different types of illumination, such as daylight



and incandescent light. Daylight contains far more short-wavelength energy than incandescent, and is “bluer.”
However, the white object retains its white appearance under both illuminants, as long as the viewer is adapted
to the light source.

7.2. Image Appearance

Standard output-referred color image encodings, such as sRGB2 and ROMM,3 and to a lesser extent video
encodings in ITU-R Rec. BT.709,37 are based on a reference output device and reference viewing conditions (a
CRT monitor environment in the case of sRGB and a print environment in the case of ROMM). Output-referred
image data represent the color-space coordinates of the elements of an image that has undergone color rendering
appropriate for a specified real or virtual output device and viewing conditions. A single scene can be color
rendered to a variety of output-referred representations depending on the anticipated output viewing conditions,
media limitations, and/or artistic intent.1

If the real output device characteristics and viewing conditions do not correspond to the intended output,
the image appearance will change and image quality can decrease when the difference becomes too large. In case
of monitor output, the following parameters should be considered:

• The monitor luminance level of the white-point should be greater than 100 cd/m2. While LCD monitors
for desktop PCs can easily achieve this today, it is limiting for CRTs and especially for battery-powered
LCD displays. The maximum luminance level has an influence on the dynamic range of the display.

• The level of ambient illumination should be significantly lower than the luminance level of the monitor
white point. This is partly to ensure that the observer is reasonably adapted to the monitor, but primarily
to ensure that the full contrast range of the monitor is not significantly reduced by the effects of veiling
glare (see below). For monitors with a white-point luminance of 100 cd/m2, the illuminance falling on the
monitor should be around 64 lux or less. For comparison, the illuminance falling on a monitor in typical
office environments is around 300 lux. The chromaticity of the ambient illumination should be close to the
chromaticity of the monitor.

• Veiling glare is reflected light that does not originate from the monitor. Although primarily influenced by
the amount of ambient illumination, any other reflection can contribute, such as a window in the field of
view, light clothing, etc. Veiling glare lightens and reduces the contrast of the darker parts of an image.

• The chromaticity of the white-point of the monitor should match the white-point defined in the color image
encoding, i.e. D65 for sRGB and ITU-R Rec. BT.709. When just viewing an image on a monitor, this
point is less critical. We adapt to the white-point of the monitor when the ambient illuminant is low.

• The dynamic range, determined by the monitor white-point luminance, the black-point luminance, the
viewing glare, and the chromaticities of the phosphors determine the color gamut of the monitor. The
smaller the gamut, the less colorful an image will appear.

• The surround conditions of an image or video on the screen should be neutral to avoid any simultaneous
contrast effects.

Reducing the dynamic range, and by consequence the color gamut, can be of advantage to “hide” certain
artifacts. If the dynamic range is reduced, contrast is reduced. Thus, certain artifacts might fall below the
visibility threshold of the observer. The same applies when comparing moving and still pictures. Motion can
mask a lot of artifacts that would be visible in still pictures. Therefore, it is important that a quality metric be
evaluated in similar conditions as the intended output. Ideally, any given metric is flexible enough to “scale”
according to output conditions.

However, if an image or video is displayed in conditions significantly different from the intended output, other
artifacts may occur. For example, veiling glare will not only reduce the contrast in the shadows, but also the
overall contrast. As a result, fewer image details are visible. A simulation of this effect is illustrated in Figure 6.



Additionally, color rendering systems in printers usually try to render an image based on the assumed image
appearance communicated by the color image encoding. Today, a printer usually assumes the image is encoded
in sRGB,∗ and tries to match that appearance with device specific paper and colorants. If the actual viewing
conditions differ substantially from the intended conditions, a cross-comparison between monitor and print
becomes very difficult. The print will then look substantially different from the monitor image. This is especially
important if any artistic rendering decisions are taken based on the monitor image.

In general, the quality requirements for images/videos viewed on a monitor are lower than the quality re-
quirements for prints. This is primarily due to the limits on dynamic range and gamut that reduce apparent
contrast and mask quantization artifacts. Furthermore, the spatial resolution requirements for screen display are
usually much lower than for a print. On the other hand, the adaptation of observers to the monitor white-point
ensures that no color cast is perceived independent of which white-point setting is chosen. As far as video is
concerned, the decrease in contrast sensitivity with increasing temporal frequencies together with the masking
effect of high motion activity hides artifacts that would otherwise be visible on a single frame.

8. DISCUSSION AND CONCLUSIONS

Color image quality depends on many factors. In this paper, we were primarily concerned with artifacts in-
troduced by current compression algorithms and transmission errors. We presented three artifact metrics and
discussed their prediction performance on images. We also tested them as no-reference video quality predictors
and obtained high correlations with subjective mean opinion scores.

Nonetheless, it may be worth recalling what the British politician Benjamin Disraeli (1804 - 1881) once said:
“There are three kinds of lies: lies, damned lies, and statistics.” This statement, unfortunately, also applies
to many image quality and subjective evaluation studies. Care should be taken to make sure that the image
samples, the testing conditions, the evaluation parameters and the statistical analysis are really meaningful to
assess as subjective an attribute as “quality.” For example, while the statistics used in this paper to characterize
the prediction performance of video quality metrics, namely correlation coefficients and error residuals, give a
certain indication of metric performance, they are probably not the best way to analyze this type of data. The
time series data obtained in the SSCQE experiments and from the metrics have a relatively high auto-correlation,
i.e. each sample is dependent on the previous and following samples. This problem of analyzing such data is not
addressed in existing recommendations and standards. It also makes it difficult to separate the data into tuning
and test sets in a meaningful fashion. As a possible solution, it has been proposed to subsample the time series
data until they become independent, but this is not completely satisfactory. We are examining approaches that
are better suited for the comparison of such time series data.

The other important point we would like to emphasize is the choice of metrics. No-reference quality metrics
are certainly the most versatile, as they can be used in many situations where the reference is unavailable, or
where an exact alignment with the original is not possible. As such, they can be implemented on the client side
of streaming applications. If the output conditions are known, the quality metric can even be “tuned” to the
specific conditions, and give feedback to the streaming server.

Still, no-reference quality assessment does have its problems, as we have pointed out in this paper as well. Any
additional information about the “original” content can only improve the prediction performance of a quality
metric (if the practical issues of making available well-aligned reference information is solved). In still image
print applications, for example, some color re-rendering algorithms rely on camera specific metadata to improve
the quality of their output, such as white-point, exposure, and color cast corrections. If the metadata is stripped
away, mostly through opening and saving an image in an application that does not support metadata, the
efficiency of these algorithms is decreased. In video applications, reduced-reference quality metrics have become
quite popular and successful. Several metrics in the latest VQEG evaluation are based on this approach,22 even
though the tests were performed in a full-reference setting and the metrics had access to the uncompressed
reference videos. Some of them are of relatively low complexity, achieve very good results and clearly outperform
PSNR. In the end, the application at hand is probably the determining factor for choosing the “right” type of
quality metric.

∗ This applies to printers that are not ICC color management compatible, and/or to image files that are not tagged with an ICC
profile specifying a different encoding.
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Figure 1. Examples of artifacts commonly introduced by image or video compression: blockiness (left) and blurriness (right).

Figure 4. Examples for color bleeding and loss of colorfulness due to JPEG (left) and JPEG2000 (right) encoding.

Figure 6. Simulation of an image without veiling glare (left) and with 4% glare of the adapted white-point luminance (right).


