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ABSTRACT

We are proposing an interpolation technique for head related transfer functions (HRTFs). For deriving
the algorithm we study the dual problem where sound is emitted from the listener’s ear and the generated
sound field is recorded along a circular array of microphones around the listener. The proposed interpolation
algorithm is based on the observation that spatial bandwidth of the measured sound along the circular array
is limited (for all practical purposes). Further, we observe that this spatial bandwidth increases linearly with
the frequency of the emitted sound. The result of the analysis leads to the conclusion that the necessary
angle between HRTFs is about 5 degrees in order to be able to reconstruct all HRTFs up to 44.1 kHz in the
horizontal plane.

1. INTRODUCTION
A number of head-related transfer function (HRTF)1 in-
terpolation methods have previously been proposed. The
HRTFs are either interpolated in the time domain, fre-
quency domain, or some other representation such as
principle component domain. One of the most simple
and straightforward methods applies linear interpolation
using the nearest neighbor HRTFs for obtaining HRTFs
at any angle in between those [1].

1In most cases, we denote with “HRTF” the corresponding time
domain impulse response.

More sophisticated methods have been proposed which
do not only take into account the two nearest available
HRTFs. One of these methods is the inverse distance
weighting method [2], where several neighboring HRTFs
are weighted by the inverse of the distance to the HRTF
to be obtained by interpolation. Also splines [3] have
been used for HRTF interpolation.

It has been shown that for interpolation in the time do-
main or frequency domain performance can be improved
by compensating the HRTFs prior to interpolation ac-
cording to the time of arrival of sound [4]. That is, the
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HRTFs are time aligned and interpolation is carried out
on the time-aligned HRTFs. Additionally, the time of ar-
rival is interpolated separately.

Comparisons of HRTF interpolation methods have been
presented in [5, 2]. Most previous studies have applied
and evaluated HRTF interpolation methods with signifi-
cantly less given measured HRTFs than would be neces-
sary to represent all information contained in the HRTFs
at all possible directions. We are deriving the angular
spacing between measured HRTFs that is necessary such
that HRTFs can be obtained with high precision at all
possible azimuthal angles. It will be shown that this an-
gular spacing is directly related to the bandwidth of the
HRTFs. We show that with sufficiently small angular
spacing all possible HRTFs can be interpolated with high
precision.

For deriving the mentioned relations, the dual problem is
analyzed: sound is emitted from the left or right ear en-
trance and the sound field is analyzed on a circle around
the subject. Considering a spherical head model with
diffraction effects, it is shown that the occurring spa-
tial frequencies on the circle are almost bandlimited. We
show that the maximal angular frequency is proportional
to the maximal temporal frequency of the emitted sig-
nal. Given this insight, spatial interpolation is applied
along the circle considering all given HRTFs. The effec-
tive bandwidth of spatial frequencies along the circle is
such that for a temporal sampling frequency of44.1 kHz,
HRTFs are needed every5◦ such that they capture all the
information, i.e. such that the HRTFs can be obtained for
any angle.

A number of numerical simulations considering models
and measured HRTF data are carried out. It is confirmed
that when the HRTFs are not closely enough spaced
most error occurs above a specific temporal frequency.
This frequency is dependent on the spacing between the
HRTF measurements.

The paper is organized as follows. Section 2 studies
the bandwidth limit of the sound field on a circle in a
setup similar to the dual problem of HRTF measurement.
Given this result, sampling and interpolation of HRTFs is
considered in Section 3. Numerical simulations and ex-
periments are presented in Section 4. Section 5 discusses
the proposed technique and some further planned work.
Finally, conclusions are drawn in Section 6.

2. INTERPOLATION OF THE SOUND FIELD

ALONG A CIRCULAR MICROPHONE ARRAY
In this section we investigate the interpolation of the

sound field along a circular array of microphones. The
specific setup is presented and the necessary number of
microphones needed to interpolate the sound field on the
circle is derived. This is done by studying the spatial
bandwidth of the sound field along the circle. The results
of this analysis will further be applied to the problem of
HRTFs interpolation in Section 3.

2.1. Problem setup

Consider the situation depicted in Fig. 1. A circular mi-
crophone array of radiusr in free field is given. The coor-
dinates of the different microphones are(mx, my, mz),
with mx = r cos θ andmy = r sin θ. We assume the
sound source to be located inside of the array and to
have coordinates(sx, 0, sz) (for simplicity of the further
derivations, we assume the source to have noy compo-
nent). The source is located at a distances from the cen-
ter of the array. We want to determine the number of
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Fig. 1: A loudspeaker emits sound in free field. The
sound field is recorded along a circle with equally spaced
microphones.

microphones that need to be placed on the circle in order
to interpolate the sound field at any position of the circle.
Note that when the sound field is known at every position
on the circle, it can further be extrapolated outside of the
circle when no additional source is located in the region
of space to be extrapolated [6, 7].

2.2. Spatial bandwidth of the sound signal

In the following, we first show how the sound field is rep-
resented in the angular-time domain. Further, an analy-
sis of the sound field is given in both angular and tem-
poral frequency domain. We derive for each temporal
frequency the bandwidth along the angular frequency.

2.2.1. Sound field on the microphone array

Consider a source emitting sound in free field. The dif-
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ferent time signals recorded at any angle on the circle are
gathered in a functionp(θ, t). This function is shown in
Fig. 2(a) for the source emitting a Dirac pulse. The top
view of the function is presented in Fig. 2(b) and repre-
sents the time that the sound has traveled from the source
to the microphones. We call this functionh(θ), with

h(θ) =

√

(sx − r cos θ)2 + (r sin θ)2 + (sz − mz)2

c
,

wherec is the speed of sound propagation.
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Fig. 2: (a) Sound field measured on the circle. (b) Top
view of (a).

2.2.2. Spatial bandwidth

In order to study the spatial bandwidth of the sound field
recorded on a circle, variables for the temporal frequency
ω and the angular frequencylθ are used. Note thatlθ ∈ Z

due to2π periodicity of theh(θ). We consider first the
case of a sinusoid of a specific temporal frequencyω

emitted by the loudspeaker and recorded on the micro-
phone circle. The angular Fourier transform of the signal
gathered on the circle is:

Q(lθ) =

∫ 2π

0

e−jωh(θ)e−jlθθdθ. (1)

Note that in this expression, we do not consider the at-
tenuation depending on the distance traveled. This effect
can mostly be considered as negligible as shown in [8].

(1) corresponds also to the Fourier transform of a phase
modulation (PM) signal where the carrier frequency
would be zero and the modulation function would be
h(θ). The bandwidth of this signal has been studied in
the literature [9, 10] and has led to the Carson’s rule. In
our case, the bandwidth ofQ(lθ) can be approximated
by

Bandwidth(Q(lθ)) = max
θ

[

dh

dθ

]

ω + W, (2)

with W the bandwidth ofh(θ).2

The first derivative ofh(θ) with respect toθ is given by

dh

dθ
=

sxr sin θ

c
p

(sx − r cos θ)2 + (r sin θ)2 + (sz − mz)2
. (3)

To know where the maxima of this function occur, we
calculate the second derivative ofh(θ) with respect toθ.
By setting the obtained expression to zero, we obtain the
values of the angleθ that maximize the first derivative of
h(θ). Replacing these values ofθ in (3), we obtain:

dh

dθ
= ±

√
A + 2sxr −

√
A − 2sxr

2c
, (4)

with A = s2
x + r2 + (sz − mz)

2. When the source is
located in the same plane as the circular array, the ex-
pression of the derivative gets simpler: for a source lo-
cated inside of the circular array, the maximal derivative
of h(θ) is dh

dθ
= ± s

c
; for a source located outside of the

circular array, the maximal derivative ofh(θ) becomes
dh
dθ

= ± r
c
. Further we can also prove that the maximal

derivative ofh(θ) associated to a source outside of the
plane of the array is always smaller than the derivative
for a source on the plane:

∣
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√
A + 2sxr −
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2c
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The maximum derivative is thus only dependent on the
minimum between the distance from the center of the
array to the source and the radius of the array,

∣

∣

∣

∣

dh

dθ

∣

∣

∣

∣

≤ min(s, r)

c
. (5)

2To apply Carson’s rule, we need to satisfy either

W � maxθ

h

dh

dθ

i

ω or W � maxθ

h

dh

dθ

i

ω.
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The signalh(θ) is a very smooth signal and therefore
its bandwidthW can be shown to be approximately zero
(unless in specific cases where the source is very close to
microphones). Therefore, for a source located inside the
circular array, (2) becomes

Bandwidth(Q(lθ)) ≈
ωs

c
. (6)

In case of a Dirac emitted from the source, the sound field
can be represented by its2-dimensional Fourier trans-
form (2D-FT) P (lθ, ω). This spectrum has a bow-tie
shape following the rule:

|lθ| ≤ |ω|s
c
. (7)

This spectrum is shown in Fig. 3.

ω

Fig. 3: 2D-FT of the sound field recorded on a circular
array.

3. HRTF SAMPLING AND INTERPOLATION
In Section 2, we have presented theoretical results for the
sampling of the sound field using a circular microphone
array. The same theory can be applied for the dual prob-
lem, the case when the sound field is measured at one
position and sound is emitted by a circular loudspeaker
array. A very interesting application of this dual prob-
lem is the sampling of HRTFs in an anechoic chamber to
measure the characteristics of the pinnae, head, and torso
of a person [11]. The typical setup for HRTF measure-
ment is shown in Fig. 4. The loudspeakers are located
along a circle around the person. The microphone is lo-
cated in the ear of the listener to capture the sound field
at the entrance of the ear. One can place all the differ-
ent HRTFs (time domain impulse responses) next to each
other and take the2D-FT of this data. To understand the
shape of the spectrum, we consider the same theory as
the one presented in Section 2. When the head is well

−90

d

r

90

180

0

o o

o

o

Fig. 4: Setup for the recording of HRTFs.

centered in the middle of the loudspeaker array, we con-
sider the position of the microphone to bed

2 = 9 cm
away from the center of the circle (half the spacing be-
tween the two ears) [11]. We therefore can use (7) to
predict that the2D spectrum of the HRTFs will also have
a bow-tie shape spectrum following the relation:

|lθ| ≤ |ω| d

2c
≈ |ω|0.09

c
. (8)

This relation gives us the angular frequency support cor-
responding to any temporal frequency. Therefore, the
Nyquist theorem will give us for any temporal frequency
the necessary angular spacing between consecutive loud-
speaker positions. We can define an angular sampling
frequency,lθS

= 2π
∆θ

, where∆θ corresponds to the spac-
ing between two consecutive loudspeaker positions. To
satisfy Nyquist we need to have

|lθS
| ≥ 2|ωmax|

d

2c
≈ 2|ωmax|

0.09

c
, (9)

with ωmax the maximal temporal frequency present in the
signal. In particular, (9) indicates that in order to sample
HRTFs for a average adult human (d ≈ 0.18 m) with a
temporal sampling rate of44.1 kHz, a spacing of4.9◦

is necessary. Sampling the HRTFs with a larger angu-
lar spacing will lead to errors in the interpolation due to
aliasing.

3.1. Head shadowing

The theory expressed above is valid in the case of HRTFs
when the effect of the head shadowing is not considered.
In practice, the wave is diffracted by the head [11]. This
diffraction has to be taken in account and modifiesh(θ).
A model is given by [12]. The HRTFs are expressed as:

H(ρ, µ, θ) = − ρ

µ
e−iµρΨ, (10)
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with

Ψ(ρ, µ, θ) =

∞
∑

m=0

(2m + 1)Pm(cos θ)
hm(µρ)

h′

m(µ)
,

whereµ is the normalized temporal frequency,Pm is a
Legendre polynomial of degreem, andhm is anmth or-
der spherical Hankel function. Taking the Fourier trans-
form of (10) we also observe a bow-tie spectrum sat-
isfying (8), as shown in Fig. 5(a). The obtained spec-
trum considering HRTFs measured on a Kemar head [13]
sampled every5◦ in an anechoic chamber is shown in
Fig. 5(b). We can observe that (9) is satisfied since a
spacing of5◦ results in almost no aliasing at44.1 kHz.

(a)

(b)

Fig. 5: 2D Spectra of HRTF: (a) using a diffraction
model. (b) Using measured data.

3.2. HRTF Interpolation
The interpolation of the dataset is obtained using a sinc
interpolator in time domain (or more efficiently a zero-
padding in frequency domain). This interpolation is very
suitable in the case of a circular array since the Fourier
transform is applied on a circular array that is2π peri-
odic. In the case of interpolation along a linear array, in-
terpolation performance decreases due to the finite length
of the array which introduces border effects [14].

Depending on the angular sampling of the database to be
considered, interpolation is only applied for frequencies
satisfying (9). Higher frequencies will not be correctly
interpolated due to the spectral repetitions appearing be-
cause of the angular sampling.

4. SIMULATIONS AND EXPERIMENTS
In this section, we present numerical simulations and

experimental results to study the error obtained by inter-
polation of the HRTFs.

4.1. Interpolation error

To verify the performance of the interpolation, we used
36 measurements spaced every10◦ and interpolated
HRTFs every5◦. The interpolated HRTFs were com-
pared with corresponding measurements which were
available and the normalized mean square error (MSE)
was calculated.

Using a spacing of10◦, interpolation of the HRTFs can
only be correctly done up to10.8 kHz as follows from
(9). Therefore, prior to interpolation the HRTFs (impulse
responses) are lowpass filtered using a lowpass filter with
a cutoff frequency corresponding to the maximum tem-
poral frequency associated to the specific angular spac-
ing.

The first data set was a simple simulation in free field
with a set of loudspeakers and a microphone mimick-
ing a setup for HRTF measurement without considering
head shadowing. The MSE of the interpolation is shown
as solid line in Fig. 6(a). The same simulation was car-
ried out using the model of HRTFs from [12] and the
MSE is shown as a dashed line in Fig. 6(a). We see that
these two experiments show a MSE varying from−35
to−65 dB. Best interpolation is obtained at the positions
around−90 and90◦ while slightly worse interpolation
is achieved at0 and180◦ (the angles are referenced in
Fig. 4).

Finally, the MSE on the interpolation of the measured
HRTFs from [13] is shown as a solid line in Fig. 6(b).
The MSE was slightly higher than in the simulations but
still of the order of−40 dB.

For purpose of comparison, we applied a technique pro-
posed in the literature [4] in order to compare the results.
HRTFs were first aligned and the time aligned version of
the HRTFs were linearly interpolated. The time of ar-
rivals were also linearly interpolated. The MSE on the
interpolation is presented in dashed line in Fig. 6(b). It
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can be observed that this method is clearly worse than
the proposed technique.
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Fig. 6: Interpolation MSE. (a) Comparison of MSE for
interpolation of simulated HRTFs with (dashed) or with-
out head shadowing (solid). (b) MSE of the interpolation
applied to measured HRTFs (solid) and nearest neighbor
linear interpolation technique applied to measured data
(dashed).

4.2. Frequency dependence of interpolation
error

In this section, we present results on the frequency de-
pendent character of the error obtained by interpolating
the HRTFs. As was explained in Section 3.2, correct in-
terpolation can only be achieved when (9) is satisfied.
This relation can be verified by observing the frequency
dependent error on the interpolation when applying the
algorithm on HRTFs too coarsely spaced without prior
lowpass filtering. The HRTFs considered in this sec-
tion were sampled at a temporal sampling frequency of
44.1 kHz.

Fig. 7(a) presents the frequency dependent error on
HRTFs averaged over all spatial positions. Interpolation
was applied in the case of10◦ (curvesA andB) and20◦

(curvesC andD) angular spacing between consecutive
loudspeakers. CurvesA andC (solid lines) represent the
simulated HRTFs without head shadowing effect, while
the effect is taken into account in curvesB andD (dot-
ted lines). It can be observed that the curves considering
the head shadowing are very close to the simpler model
without considering head diffraction. Therefore it can
be concluded that taking this effect in account does not
modify the error significantly.

Fig. 7(b) presents the same results in case of measured
HRTFs. The interpolation error when using HRTFs ev-
ery 10◦ is shown as solid line and as dotted line for an
angular spacing of20◦. In both figures, the two verti-
cal lines correspond to the maximal values of the tem-
poral frequencies corresponding to angular samplings of
10◦ and20◦ as given by (9). The two figures allow us
to conclude that interpolating HRTFs for higher frequen-
cies than the ones predicted by (9) leads to large errors
while the interpolation error stays limited when obeying
(9).

5. DISCUSSION
The proposed technique explores the bandlimited char-

acter of the sound field along the circle in an HRTF mea-
suring scenario. Conventional interpolation technique is
applied considering all the HRTFs along the circle. Our
method does not require any time alignment as is often
done in previous techniques.

When HRTFs with high bandwidth are required the an-
gular spacing between HRTF measurements needs to be
quite small (e.g.5◦ for a sampling rate of44.1 kHz).
We have shown that when the angular spacing between
HRTF measurements is too large, the error occurs mostly
at high frequencies. For example, when HRTFs need to
be interpolated up to2 kHz, it is sufficient to measure
them only every40◦. This motivates further work: we
plan to apply the proposed technique only at frequencies
where according to the analysis of this paper no aliasing
occurs. At higher frequencies we plan to devise a dif-
ferent interpolation algorithm, possibly taking advantage
of the “phase deaf” character of the auditory system at
higher frequencies.

6. CONCLUSION
We proposed an HRTF interpolation algorithm based on
spatial interpolation of the sound field on a circle. For a
given audio bandwidth we derived the necessary angular
spacing between HRTF measurements such that HRTFs
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Fig. 7: Frequency dependent MSE for the interpolation
of HRTFs positions. (a) Simulations without considering
the head (dotted lines, curvesA andC) and with spheri-
cal head model (solid, curvesB andD). CurvesA andB

are obtained with an angular spacing of10◦ and curves
C andD with 20◦. (b) Measured HRTFs for an angular
spacing of10◦ (solid) and for20◦ (dashed). In both fig-
ures, the two vertical lines correspond to the maximum
values of the temporal frequencies corresponding to an-
gular samplings of10◦ and20◦ as given by (9).

at any angle can be interpolated accurately. Numerical
results carried out with head models and measured data,
indicate that indeed HRTFs can be interpolated very pre-
cisely if the angular spacing between measurements is
small enough relative to the required audio bandwidth.
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