
Efficient routing with small buffers in dense networks

Guillermo Barrenetxea∗, Baltasar Beferull-Lozano∗ and Martin Vetterli∗†
∗Laboratory for Audio-Visual Communications (LCAV)

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
Email:{guillermo.barrenetxea, baltasar.beferull, martin.vetterli}@epfl.ch

†Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, Berkeley CA 94720, USA

Abstract— The analysis and design of routing algorithms for finite
buffer networks requires solving the associated queue network problem
which is known to be hard. We propose alternative and more accurate
approximation models to the usual Jackson’s Theorem that give more
insight into the effect of routing algorithms on the queue size distribu-
tions.

Using the proposed approximation models, we analyze and design
routing algorithms that minimize overflow losses in grid networks with
finite buffers and different communication patterns, namely uniform
communication and data gathering. We show that the buffer size required
to achieve the maximum possible rate decreases as the network size
increases.

Motivated by the insight gained in grid networks, we apply the same
principles to the design of routing algorithms for random networks with
finite buffers that minimize overflow losses. We show that this requires
adequately combining shortest path tree routing and traveling salesman
routing. Our results show that such specially designed routing algorithms
increase the transmitted rate for a given loss probability up to almost
three times, on average, with respect to the usual shortest path tree
routing.

I. INTRODUCTION

In many scenarios, packet buffering is expensive in terms of
cost, processing and/or space. For instance, common devices used
in sensor networks present a limited and generally small amount of
memory [1]. This problem is also faced in the context of optical
networks, where optical buffering and all-optical processing are still
technologically difficult tasks. In this paper, we focus on the analysis
and design of routing algorithms that maximize the throughput per
node in dense networks with finite buffers, or in other words, algo-
rithms that minimize the overflow losses for a given transmission rate.
This analysis requires solving the queueing problem associated to the
network. However, no analytically exact solutions are known for even
the simplest queueing networks [2] and queueing approximations are
required to model the network.

Depending on the purpose of the network (monitoring, data
collection, actuation), various traffic patterns can be considered.
Particularly, we study two different communication patterns: uniform
communication (UC) and central data gathering (CDG). UC corre-
sponds to a distributed control network, where every node needs
the information generated by all nodes in the network [3]. CDG
represents a monitoring network, where the information generated
by all nodes in the network is collected by one node (sink) [4].

We assume that either the sensor network is wired (e.g. CMOS cir-
cuits) or, if it is wireless, that there exits a transmission schedule that
avoid conflicts which is implemented in the MAC layer. We abstract
the wireless case as a graph with point-to-point links and transform
the problem into a graph with nearest neighbor connectivity.

We begin with the problem for the case of square grid networks.
We propose alternative and notably improved approximation models
to the classical Jackson’s Theorem, to analyze the distribution on the
queue size for the most loaded node where overflow losses will first

appear as the transmission rate is increased. These approximation
models allow very good analysis in the medium load regime. Using
these models, we characterize the optimal routing algorithm that
minimize overflow losses, consisting in a traveling salesman (TS)
routing. We also show the existing trade-off between overflow losses
and delay.

Motivated by the insight gained in grid networks, we apply
similar principles to the design of routing algorithms that minimize
overflow losses for random networks. In this case, the appropriate
routing strategy consist in combining adequately the shortest path tree
(SPT) routing and TS. The maximum rate achieved by the proposed
algorithm is almost three times the rate achieved with the usual SPT
routing for small buffers and dense networks.

The rest of the paper is structured as follows: In Section II,
we introduce the network model and assumptions. In Section III,
we study the uniform communication pattern in a square grid. In
Section IV, we carry out a similar analysis for CDG. In Section V we
study the routing problem in random networks. Finally, conclusions
are presented in Section VI.

A. Related Work

Most previous research work on finite buffers is based mainly on
Jackson’s theorem [2]. Harchol-Balter and Black [5] considered the
problem of determining the distribution on the queue sizes induced
by the greedy routing algorithm in square grid and torus networks,
assuming exponentially distributed service time for the edges. This
hypothesis allows the reduction of the problem into a product-form
Jackson queue network and its analysis using standard queueing
theory techniques. Mitzenmacher [6] also approximated the system
using an equivalent Jackson network with constant service time
queues. Leighton [7] provided bounds on the the tail of the delay and
queue size distributions of the greedy routing algorithm for square
grid and torus networks.

II. MODEL AND DEFINITIONS

We consider square grid based sensor networks composed of
devices with routing capabilities that generate constant size packets
(traffic) as shown in Fig. 1, where edges represent communication
links between the nodes. The length of a path is defined as the
number of links in that path. A link l represents a communication
channel between two nodes. In this work, we consider two cases for
these communication channels, namely, the half-duplex and the full-
duplex case, depending upon whether both nodes may simultaneously
transmit, or whether one must wait for the other to finish before
starting a transmission. We denote by ϕ(di) the set of links connected
to the node di. For simplicity, we consider the time unit to be the
time it takes a packet to traverse one link.

Every node in the network can potentially be the source or the
destination of a communication, as well as a relay for communi-
cations between any other pair of nodes. We assume that nodes
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Fig. 1. Network model example: 5×5 square grid. The shortest path region
SPR(di, dj) between nodes di and dj is delimited by the dashed rectangle.

generate information independently, following a stationary Bernoulli
distribution, with a constant average rate of R packets per time unit.
We assume also that nodes are equipped with buffer capabilities
for the temporary storage of Q packets. When packets arrive at a
particular node or are generated by the node itself, they are placed
into a queue until the node has the opportunity to transmit them
through the required link. In this setting, we can consider that each
nodes has four queues, each associated with one of the four output
links of the node.

In the case of half-duplex links, if two neighbor nodes want to
use the same link, we assume that both have the same probability of
capturing the link for transmission.

We define network capacity, C(N), as the maximum average
number of information packets that can be transmitted reliably per
node and per time unit, in a network of size N × N , assuming that
the nodes have an infinite buffer.

We denote by RΠ
max(N, Q) the maximum average rate that can

be transmitted reliably per node and per time unit, in a N × N
grid network, with buffer size Q, for a given routing algorithm Π.
Obviously, RΠ

max(N, Q) ≤ C(N). Strictly speaking, the probability
of losing a packet due to buffer overflow under random packet
generation is always non-zero for any value of R > 0. Therefore,
we consider a transmission to be reliable when the loss probability
is smaller than a given threshold. In the subsequent sections, we
study routing algorithms that achieve the maximum RΠ

max(N, Q) for
different communication patterns.

III. UNIFORM COMMUNICATION

The uniform communication pattern models fairly well the scenario
of a distributed control network, where the probability of any node
communicating to any other node in the network is the same for all
pairs of nodes. We start with a brief review of the infinite buffer case
and then analyze the effect of finite buffers.

A. Routing with Infinite Buffers

If finite buffers are not considered, the analysis is only based on
stability issues: when the arrival rate is higher than the departure rate,
queues become unstable and the expected delay is unbounded. The
network capacity Cu(N) is given by [8]:

Cu(N) =
2cl
N

1 − 1
N2 , if N is even,

2cl
N

, if N is odd,
(1)

where cl is equal to 1 for half-duplex and 2 for full-duplex.
Network capacity can be achieved by using an appropriate shortest

path routing algorithm Π [8]. Note that the bottleneck of the network
is clearly located in the central nodes. Intuitively, to maximize the
maximum achievable rate per node RΠ

max(N,∞), a routing algorithm
has to avoid routing packets through the grid center and promote, as

much as possible, the distribution of traffic towards the borders of
the grid.

This can be accomplished by the following simple routing strategy:
nodes always route packets along the row (or column) in which
they are located, towards the destination node, until they reach
the destination’s column (or row). Then, packets are sent along
the destination’s column (row), until they reach the destination
node. We denote this routing by row-first (column-first)[7]. Indeed,
Rrow-first

max (N,∞) = Cu(N) [8].

B. Routing with Finite Buffers

When finite buffers are considered, the maximum rate per node
is clearly reduced due to buffer overflow. Overflow losses will first
appear in the most loaded node, which determines the maximum
achievable rate RΠ

max(N,∞). In a square grid, the node located in
the center is clearly the most loaded node. We denote it as di. In this
section, we restrict our analysis to di and to the routing algorithm
that achieves capacity with infinite buffers, that is, row-first.

Computing the network capacity for different buffer sizes Q
requires analyzing the associated queue network and computing the
distribution on the queue size at di. However, the analysis of queue
networks is complex and no analytically exact solutions are known
even for the simplest cases [2]. In this section, we introduce some
approximations that simplify the analysis and provide meaningful
theoretical results that, as experimentally shown later, are close to
the results obtained by simulation.

First, we decompose di into four identically distributed and inde-
pendent FIFO queues associated to its four output links. The input
packets to di whose final destination is not di, are sent through
one of the four output links depending on their destinations. In
view of the symmetry of di, the arrival distributions to these four
links are clearly identical. Moreover, due to the independence of
packet generation, we assume that these arrival distributions are also
independent. Therefore, we approximate the distribution on the queue
size at di as the addition of these four iid distributions and compute
it as the convolution of each individual queue. This way, we reduce
the problem to computing the distribution on the size of only one
queue, qi, associated with the output link li in di.

1) Full-Duplex communication channels: If li is a full-duplex
channel, qi has a dedicated link and it can be modeled as a
deterministic service time queue. In this approximation model, we use
some results by Neely, Rohrs and Modiano [9], [10], on equivalent
models for multi-stage tree networks of deterministic service time
queues. We begin by reviewing the main theoretical results in [9],
[10], and then show how these results can be applied to our problem.

Theorem 1: ([9]) The total number of packets in a two-queue
system is the same as in a system where the first stage queue has
been replaced by a pure delay of T time units.

Theorem 2: ([10]) The analysis of the queue distribution in the
head node of a multi-stage tree system can be reduced to the analysis
of a much simpler two-stage equivalent model, which is formed by
considering only nodes located one stage away from the head node
and preserving the exogenous inputs.
Fig. 2 shows the equivalence provided by Theorem 1. Fig. 3 shows
a tree system and its two-stage equivalent model. Importantly, these
equivalences do not require any assumption about the nature of the
input traffic. The only necessary condition is that all queues of the
tree network have a deterministic service time T , and the input traffic
is stationary and independent among sources.

We use these results to obtain the distribution on the size of qi.
First, we identify qi as the head node of a tree network composed of
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Fig. 2. The total number of packets in a two-queue system remains the same
if the first stage queue is replaced by a pure delay of T time units.
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Fig. 3. The number of packets in the head node of the tree network (a) is
the same as in the two-stage equivalent model (b).

all the nodes sending traffic through li (Fig. 4). Applying Theorem 2,
the distribution on the size of qi can be approximated by the
distribution at the head node of the two-stage model (Fig. 4), where
we only consider the three neighbors located one hop away from
di preserving the traffic generated by the entire network that flows
through li.

Note that the tree network associated to qi (Fig. 4) does not
correspond exactly with the tree network of Theorem 2 (Fig. 3). The
reason is that, in addition to the exogenous inputs generated at each
node, we also have some traffic leaving the network that corresponds
to the traffic that reached its destination. Note that the average traffic
leaving the network at any node is equal to R. However, as the
network size increases, R decreases as O(1/N), and consequently,
the departing traffic at each node becomes negligible compared to the
traffic that flows though the same node. Hence, the two-stage model
provides an approximated network.

According to Theorem 2, the arrivals to the nodes of the first stage
in the two-stage model correspond to the addition of all exogenous
inputs routed through li. Since packets are generated in sources
following independent Bernoulli distributions, this arrival process
converges, as the number of nodes increases, to a Poisson distribution.

Note that packets travel O(N) hops on average before reaching
their destination. Using the row-first algorithm, packets travel most
of the time along the same row or column, turning only once.
Consequently, the traffic entering a node by a row or a column link
continues, with high probability, along the same row or column. Let
pc denote the probability of a packet to continue along the same row
or column, and pt the probability of turning. These probabilities are
easy to calculate for di:

pc =
N − 1

N + 1
, pt =

N − 1

2N(N + 1)
. (2)

Note that pc goes asymptotically to one as the number of nodes
increases, while pt goes to zero. It follows that qi receives most of
the traffic from the node located in the same row or column as li.

Apart from the traffic that arrives from its neighbors, di generates
also new traffic that is injected to the network at a rate R. Considering
again the symmetry of di, the fraction of this traffic that goes through
li is R/4. The average arrival rate λqi to qi can be computed as the
addition of both contributions:

λqi = R/4 + λ1 (pc + 2pt) , (3)

where λ1 is the total arrival rate to the neighbors of di (Fig. 4).
For row-first routing, λ1 is equal to λ1 = RN/4. We can express

R as a fraction of the network capacity C(N), that is, R = αC(N),
and denote α as relative capacity. Then, using (1), λ1 = α.
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Fig. 4. Tree network approximation: (a) the queue associated to the output
link li of di is the head node and (b) its two-stage model
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Fig. 5. Approximation models: (a) Two-stage model and the (b) two-queue
model.

Putting everything together, the resulting approximation model is
shown in Fig. 5. Regardless of the number of nodes in the network,
we reduce the analysis of the distribution on the size of qi to a
four queue network. This approximation holds for any input traffic
distribution as long as it is stationary and independent among the
different sources.

Theorem 3: The buffer size Q required to achieve a certain relative
capacity α decreases with the network size N . Furthermore, the
required buffer size goes asymptotically to zero.

Proof: By Theorem 1, the total number of packets in the approxi-
mated model (Fig. 5) is the same as a system where the queues of
the first stage have been replaced by pure delays of T time units,
and this is equivalent to injecting all the arrivals into a single pure
delay (Fig. 6). The total average arrival rate λS1 to the first queues
is λS1 = α(pc + 2pt) = α(N − 1)/(N + 1). Therefore, note that
for a fixed α, the total number of packets in this two queue model
is almost constant with N .

We can decompose the total number of packets S(t) in the
approximated model (Fig. 5) as the number of packets in the first
stage S1(t) plus the number of packets in the head node Sh(t). As
N increases, pc goes asymptotically to one and most of the traffic
is served by the same first stage queue. Consequently, for a fixed α,
S1(t) increases with N . Equivalently, Sh(t) decreases. In the limit,
we can approximate the model by just two constant service time
queues as shown in Fig. 5, where no buffer is needed in the head
node.

Subsequently, we can simplify our model even further while
still keeping the important properties that determine the queue size
distribution. Note that, since pt is O(1/N), we can simplify the
model for large networks by assuming that the number of packets
turning at di is negligible; that is, the packets arrive at qi only from
the neighbor located in the same row or column as li. Similarly, the
exogenous input traffic generated at di, goes also asymptotically to
zero (O(1/N)) as compared with the incoming traffic α, and can
also be neglected.
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Fig. 7. Distribution on the queue size at di for different values of α in a
121 × 121 square grid network with full-duplex links.

Consequently, we approximate the queue network by a two-queue
model where qi is a deterministic service time queue that receives
traffic from another deterministic service time queue with the same
service time and average input traffic equal to α (Fig. 5). It follows
that the number of packets in qi is (at most) one with probability α
and zero with probability 1 − α.

Finally, the distribution Pi(k) on the total queue size k at di, is
given by the addition of four independent and identically distributed
queues associate with the four outgoing links from di:

Pi(k) =
4
k

(1 − α)(4−k)αk, for 0 ≤ k ≤ 4,

0, otherwise.
(4)

Note that both approximation models proposed (Fig. 5) are asymp-
totically exact.

Fig. 7 shows the distributions on the size of qi obtained by
simulating the whole queueing network, the two-stage model (Fig. 5),
the two-queue model (Fig. 5) and the usual M/D/1 approximation
for different values of α in a 121 × 121 square grid network. For
the M/D/1 approximation, we simply apply Jackson’s Theorem and
consider that each queue in the network is M/D/1 and independent
of other queues [6].

Both the two-stage and two-queue models allow very good analysis
in low and medium load. Experimentally, we have found that a good
approximation is obtained for α < 0.8. Beyond this traffic intensity,
some of the assumptions we make are not totally valid and the
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Fig. 8. Half-duplex links: (a) central node and (b) approximated model for
the queue associated to li.

approximation quality degrades. For instance, we neglected the traffic
leaving the network at each (destination) node, which increases as R
increases. On the other hand, the M/D/1 model based on Jackson’s
theorem, only approximates the distribution under low load condi-
tions. For α = 0.525, we already observe that this approximation is
far form the distribution obtained experimentally. Under medium and
high load conditions, the independence assumption does not hold and
the approximation quality degrades rapidly.

Fig. 10 shows the distribution on the queue size at di, for a constant
relative capacity α = 0.75, as a function of the network size N .
As expected, both approximations become closer to the experimental
distribution as the size of the network N increases and the packet
distribution converges to the two tandem queues model (Fig. 5).

2) Half-Duplex communication channels: If li is a half-duplex
channel, we cannot apply the same techniques as in the full-duplex
case since the arrival and service times in di are no longer indepen-
dent. If di receives k packets form its neighbors, not only does its
queue increase by k packets, but it can also transmit, at most, 4− k
packets using the remaining links.

To capture the dependence between arrivals and departures, we
propose the following approximation model. Every time di wants to
send a packet through li, it has to compete for li with one of its
neighbors, dn (Fig. 8). If di takes li first, it can transmit a packet
and the size of qi is reduced by one. However, if dn takes the link
first and sends a packet, not only is di unable to transmit, but also
the size of qi is increased by one if the final destination of the packet
is not di.

Note that, in practice, packets sent by dn never go through li (pack-
ets do not go backwards) although they stay in di. However, notice
that by putting these packets into li, we simulate packets arriving
from the other neighbors of di and prevent packet transmissions.
This approximation is represented in Fig. 8.

We denote by ρi the utilization factor of qi. That is,

ρi =
λqi

µqi

=
α

µqi

,

where λqi is the arrival rate to qi, and µqi is the service rate. Note
that λqi is identical in both half-duplex and full-duplex models.

Similarly, we denote by ρn the utilization factor of the queue qn

in dn associated to li. We assume that di and dn have the same
probability to capture the link for a transmission. Therefore, if qi has
a packet waiting to be transmitted, the probability ps of sending it
in this time unit is simply equal to the probability of di being the
first to capture the link plus the probability of dn having nothing to
transmit through li:

ps =
1

2
+

1

2
(1 − ρn) = 1 − ρn/2; (5)

We assume that if di does not capture li for a transmission in this
time unit, it tries to capture it again in the next time unit. Therefore,
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Fig. 9. Distribution on the queue size at di obtained by simulation and with
the Markov chain approximation for different values of α in a 121 × 121
grid network with half-duplex links.
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we model the service time of qi as a geometric distribution with
parameter ps.

As in the full-duplex case, we approximate arrivals to dn as a
Poisson distribution with parameter α. In addition to arrivals from
dn, new packets are also generated at di with rate R. Considering
again the symmetry of di, the fraction of this traffic that goes through
li is R/4. Note that arrivals and service time distributions are both
memoryless, and therefore, if we denote by Xi(t) the number of
packets in the queue qi at time t, {Xi(t) | t > 0} can be modeled
using a Markov chain. As the network size increases, the difference
between both utilization factors, ρi and ρn, becomes negligible, and
we can assume that ρi = ρn = ρ. Moreover, the new traffic generated
at di becomes also asymptotically negligible (O(1/N)) compared to
the traffic that arrives from dn. Applying both simplifications, the
transition probability matrix Pi(j, k), associated with {Xi(t)|t > 0},
can be approximated by:

Pi(0, k) =
1 − ρ, k = 0,

ρ, k = 1,
Pi(j, k) =

1 − ρ
2
, k = j − 1,

ρ
2
, k = j + 1.

Fig. 9 shows the distributions on the queue size at di for different
values of α in a 121 × 121 square grid network with half-duplex
links. This model closely approximates the experimental distribution
for low to moderate rate per node (α < 0.8), while the approximation
quality degrades when the traffic is higher.

Fig. 10 shows the distribution on the queue size at di for a constant
relative capacity α = 0.75 as a function of the network size.

A key difference with the case of full-duplex links is that, as the
network size increases, the buffer requirements do not go asymptot-
ically to zero. The intuitive reason is that, in the case of half-duplex
links, li is shared between di and dn and, even if the input rate λli

is less than the link capacity, there is a non-zero probability that di

competes for the link with dn, in which case one of them has to store
the packet for a further transmission.

IV. CENTRAL DATA GATHERING

In central data gathering, every node transmits information to a
particular and previously designated single node dBS , denoted base
station, that can be located anywhere in the network. We start with
a brief review of the infinite buffer case and then analyze the effect
of finite buffers.

A. Routing with Infinite Buffers

Under the infinite buffer hypothesis, the network capacity Ccdg(N)
can be easily obtained based on stability issues [8]:

Ccdg(N) ≤ |ϕ(dBS)|
N2 − 1

, (6)

where |ϕ(dBS)| denotes the cardinality of ϕ(dBS).
The necessary and sufficient condition for a routing algorithm Π

to achieve capacity is that Π distributes the total arrival traffic to dBS

uniformly among the links in ϕ(dBS). For the sake of simplicity, we
restrict our analysis to a particular location of dBS : the grid center.
Nevertheless, a similar analysis can be carried out for any location.
In this case, a simple routing algorithm that achieves capacity with
infinite buffers is the random greedy algorithm [7]: for each packet,
nodes use a row-first or a column-first routing algorithm with equal
probability.

B. Routing with Finite Buffers

Although there are many routing algorithms that achieve capacity
under the infinite buffer hypothesis, we show in this section that their
performance is quite different when the buffers are constrained to be
finite. To analyze the network capacity for a given routing algorithm
under finite buffers, we proceed as in the UC case. First, we identify
the most loaded node di and associate the network to a tree. Then,
we reduce this tree to its two-stage equivalent model and obtain the
packet distribution in di by analyzing the packet distribution in the
head node of the two-stage model. We perform this analysis for any
routing algorithm Π that achieves capacity under infinite buffers.

The bottleneck of the network is clearly located in the neighbors
of dBS . Moreover, if Π achieves capacity for infinite buffers, the
total arrival traffic to dBS is uniformly distributed among the links
in ϕ(dBS). Due to the independence of packet generation, the distri-
butions on the queue size in these four nodes are iid. Consequently,
we reduce the problem to computing the queue distribution for only
one of these neighbors, di. We denote by li the link between di and
dBS , and by qi, the queue in di associated to li (Fig. 11).

We consider now only those nodes that generate traffic through li.
These nodes form a tree with qi as head, with exogenous inputs
at each node and with no traffic leaving the network. Applying
Theorem 2, the packet distribution in qi is the same as in its two-
stage model (Fig. 11). A key point is that in this case, the two-stage
model is not an approximation but an exact model for any rate.

The arrivals to the three nodes of the first stage are the addition
of all the traffic generated by the network that goes through li. If
Π achieves capacity for infinite buffers, the total average traffic that
flows through li is equal to:

λli =
R(N2 − 1)

4
. (7)

We denote by λ1, λ2 and λ3 the average arrival rate to the three first
stage nodes of the two-stage model (Fig. 11). These three nodes have
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Fig. 11. Tree network in CDG: (a) tree where li is the head node and (b)
its two-stage equivalent model.

to route all the traffic that goes through li except the traffic generated
by di itself. That is,

λ1 + λ2 + λ3 =
R(N2 − 1)

4
−R. (8)

We obtain the distribution on the size of qi by analyzing the
distribution at the head node of the two-stage model. Particularly, we
are interested in finding the routing algorithm Π that, for a given Q,
achieves the maximum rate per node RΠ

max(N, Q). This is equivalent
to minimizing the number of packets in qi for a given R.

Lemma 1: In a two-stage network where the total average arrival
rate is fixed, i.e., λ1 + λ2 + λ3 = λt, the values of λi that minimize
the number of packets in the head node for any arrival distribution
are such that all traffic arrives only through one node of the first
stage. That is:

λi =
λt, for i=1,2 or 3,

0, otherwise.

Proof: By Theorem 1, the total number of packets in the two-stage
model (Fig. 11) is the same as a system where the first stage queues
has been replaced by pure delays of T time units. In terms of number
of packets in the system, this is equivalent to injecting all the arrivals
into a single pure delay(Fig. 6). Consequently, the total number of
packets in the system is equivalent for any combination of λi values.

We can decompose the number of packets in the two-stage model
as the packets in the first stage plus packets in the head node.
Minimizing the number of packets in the head node is therefore
equivalent to maximizing the packets in the first stage. Since the
first stage is composed of three G/D/1 queues with equal service
time, the number of packets in the first stage is maximized when all
the traffic goes through only one queue.

Consequently, the routing algorithm that achieves the maximum
RΠ

max(N, Q) is such that the input traffic to di arrives only from one
of its neighbors. However, the congestion problem is now translated
to this neighbor of di. Furthermore, as the network size increases, the
difference between the traffic that flows through di and its neighbor
goes asymptotically to zero. To solve this, we apply Lemma 1
recursively, that is, the optimal routing algorithm is such that all nodes
receive as much of their traffic as possible from only one neighbor.

The shortest path routing algorithm that implements this principle
is shown in Fig. 12 and consists in the following. In the N×N square
grid, there are 2(N − 1) nodes that have only one possible shortest
path toward dBS . We denote this set of nodes by SD(dBS). For
any other node, the optimal routing algorithm consists in forwarding
packets to the closest node in SD(dBS). Note that there is only
one closest node in SD(dBS) for all the nodes except for those
nodes located in the two diagonals of the square grid. Diagonal
nodes forward packets only towards one of the two closest nodes in
SD(dBS) in such a way that each of the four diagonal nodes at the

(a) Cross routing (b) TS routing

Fig. 12. CDG routing: (a) Cross routing, the optimal shortest path routing
and (b) a TS routing algorithm, the optimal non-shortest path routing.
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Fig. 13. Routing for CDG: (a) maximum relative capacity achieved by
different routing algorithms in a 21×21 square grid for different buffer sizes
Q, (b) performance of cross routing and greedy routing relative to TS routing
for a fixed buffer size Q = 5 for different network sizes n, both plots with
95% CI.

same distance from dBS chooses a different forwarding node. We
denote this routing algorithm as cross routing. Among all shortest
path routing algorithms, cross routing generates the optimal node
arrival distribution according to Lemma 1.

According to Lemma 1, the optimal routing consists in making
nodes receive all traffic exclusively from one neighbor. This condition
can only be fully satisfied by non-shortest path routing algorithms.
Applying Lemma 1 recursively, the set of optimal routing algorithms
is such that it divides the network into four disjoint subsets of (N2−
1)/4 nodes and joins them with a single path that does not pass twice
through the same node and ends in dBS . We denote these optimal
routing algorithms as traveling salesman (TS) routing. Fig. 12 shows
an example of a TS routing algorithm. Clearly, TS routing algorithms
generate the optimal arrival distribution in all nodes.

Although TS routing achieves the maximum RΠ
max(N, Q), the

delay incurred by the packets may be unacceptable. Notice that the
average path length LTS for any TS routing algorithm is O(N2),
while for any shortest path routing, Ls−p is O(N). TS routing repre-
sents an extreme case of the existing trade-off between RΠ

max(N, Q)
and delay, achieving the optimal rate per node drastically increases
the delay. Equivalently, since most of the energy is commonly
consumed in the transmission process, to increase the average path
length is equivalent to increase the average power consumption in
the network.

We compare the performance of random greedy routing, cross
routing and TS routing. Fig. 13 shows the maximum relative capacity
RΠ

max(N, Q)/Ccdg(N) achieved by different routing algorithms in
a 21 × 21 square grid network as a function of the buffer size
Q, with the 95% confidence intervals (CI). Notice that although all
routing algorithms asymptotically achieve capacity as the buffer size
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Fig. 14. Central data gathering routing in a random network: routes generated
by (a) shortest path tree and (b) TS-SPT routing algorithms.

increases, the maximum achievable rate per node RΠ
max(N, Q) under

small buffers, differs strongly among different routing algorithms.
As expected, the maximum RΠ

max(N, Q) corresponds to TS rout-
ing, while cross routing performs best among shortest path routing
algorithms.

Fig. 13 shows also the maximum rate achieved by different routing
algorithms relative to the maximum rate achieved by TS routing for
a fixed Q = 5, as a function of the network size N , with the 95%
CI. Since all routing algorithms analyzed are asymptotically optimal
with the network size, the performance gap between TS routing and
these algorithms decreases as the network size increases for a fixed
value of Q.

V. DATA GATHERING IN RANDOM NETWORKS

Motivated by the insight gained in the grid based networks, we
extend now our results to random networks. For the square grid, we
showed that the routing algorithm that minimizes overflow losses
for central data gathering, consists in distributing the load uniformly
among the four arrival links to the base-station and uses a TS routing
algorithm within the set of nodes associated to each of these links.
The reason is that overflow losses are higher in nodes receiving traffic
from several neighbors, being more critical for those nodes close to
the base-station, and consequently, in a higher load regime.

We now examine a different scenario. We randomly place n nodes
on a unit square surface following a uniform distribution. We consider
a simple boolean model with a circular connectivity range RC for
each node, where RC is constant for all nodes. That is, if the distance
between two nodes is less than the communication radio, we assume
that there is a link between both nodes. We assume also that there
exits a transmission schedule that avoid conflicts, so that we abstract
the random network as a random graph with point-to-point links. We
consider a CDG scenario where, for simplicity, we locate the base-
station di in the center of the square surface.

Even if random networks are very different in nature from grid
networks, as we show next, the same principles can be applied to
the design of routing algorithms. The critical nodes are also those
located close to di, and to minimize overflow losses, they have to
receive traffic from only one of their neighbors. In other words, these
nodes have to route packets using a TS routing algorithm. However,
to define a TS routing in the network such that all nodes remain
connected, is hard to solve in a distributed way.

Note that nodes located far from the base-station, and consequently,
carrying less traffic, are less critical for overflow losses. Based
on these principles, we propose the following routing algorithm.
First, we establish |ϕ(di)| disjoint TS routes of certain length LTS

departing from each neighbor of di. To construct the TS routes, we
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Fig. 15. Overflow losses per node with (a) SPT routing and (b) TS-SPT
routing. The circles around nodes have a radius proportional to the overflow
losses in that node.

use a simple heuristic algorithm: we select as next node of the route
the closest node, if any, that does not belong to any TS route. Second,
the nodes that do not belong to any TS route, direct their traffic
preferentially to the end points of the TS routes using a shortest
path routing. To do so, we use a modified Bellman-Ford algorithm:
the nodes belonging to any TS route set their effective distance to
di according to their position in the route, such that, its effective
distance is inversely proportional to the number of hops towards di.
Consequently, there is a big penalty to use those nodes close to di

belonging to any TS route. Using this penalty gradient, we ensure that
all nodes remain connected. We denote this routing algorithms as TS-
SPT routing. Note that the TS-SPT routing algorithm is executed in a
totally distributed way. Fig. 14 shows the routes used to transmit the
information to di using shortest path tree (SPT) and TS-SPT routing
algorithms with LTS = 5 in a n = 200 random network. Note that
both trees select a subgraph of the original connectivity graph.

Fig. 15 shows the overflow losses per node using a SPT and TS-
SPT routing algorithms for a fixed transmission rate per node, in
the random network shown in Fig. 14 when we limit the buffer size
in the nodes to Q = 2. The circles around nodes have a radius
proportional to the overflow losses in each node. As expected, SPT
routing induces losses in those nodes close to di that receive traffic
from multiple neighbors. As can be seen in Fig. 15, these hot-spots
are suppressed when TS-SPT routing is used instead.

Note that to reduce overflow losses, it is convenient to choose a
large value for LTS , so that many nodes receive traffic from only one
node. However, if LTS is too large, the traffic would be distributed
unevenly among the neighbors of di and overflow loses would also
consequently increase. This suggests that there exits an optimal value
for LTS for which overflow losses are minimized. Note that the
number of hops toward di increases linearly with LTS . Therefore,
as in the square grid, there exist a trade-off between overflow losses
and the average number of transmissions.

To analyze the performance of TS-SPT, we carry out the following
experiment. We distribute n = [200, 400, 600] nodes with a fixed
communication range Rc = 0.17, so that we can almost guarantee
that all nodes are connected. Note that, as we increase n, we
increase the density of the network. For several network realizations,
we analyze the maximum rate per node achieved for a maximum
overflow loss probability given, using both, SPT and TS-SPT routing
algorithms, when the buffer size per node is limited to Q = 2.

Fig. 16 depicts the maximum rate per node archived for a given
loss probability and the average number of hops required to transmit
a packet to di by TS-SPT relative to SPT. TS-SPT always achieves
a higher rate per node that, on average, can be up to almost three
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Fig. 16. TS-SPT routing performance with respect to STP routing: (a)
maximum rate achieved for a given overflow loss probability and (b) average
number of hops towards the base-station for 150 random networks with the
95% CI.

times the rate achieved with SPT routing. The gain is clearly more
noticeable for dense networks. The reason is that, in dense networks,
nodes located close to the base-station are in the communication
range of an increasing number of nodes, and consequently, they
receive traffic from multiple nodes. This is the case where the use of
TS routes close to di gives a higher gain. On the other hand, note
also that, as expected, the number of hops increases almost linearly
with LTS . This illustrates the trade-off between overflow losses and
the average number of transmissions.

VI. CONCLUSIONS

In this paper, we first analyze optimal routing algorithms that
minimize overflow losses in grid networks. We present TS routing
as the extreme case of the existing trade-off between overflow losses
and transmissions: it achieves the maximum throughput per node
while the number of required transmissions increases drastically. For
random networks, we present also several results which indicate
that the intuition gained from grid networks is valuable for the
design of routing algorithms that also trade-off overflow losses and
transmissions. Our current research focuses on extending these results
to include important practical issues, such as energy constrains.

Usually, the information that nodes send to the base-station is
highly correlated. This correlation can be exploited to reduce the
rate that nodes inject into the network. Particularly, we are interested
in studying the interaction of the routing problem for finite buffers
and the correlation in the data.
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