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Abstract. A simple algorithm for the evaluation of discrete Fourier transforms (DFT) and discrete cosine transforms (DCT)
is presented. This approach, based on the divide and conquer technique, achieves a substantial decrease in the number of
additions when compared to currently used FFT algorithms (30% for a DFT on real data, 15% for a DFT on complex data
and 25% for a DCT) and keeps the same number of multiplications as the best known FFT algorithms. The simple structure
of the algorithm and the fact that it is best suited for real data (one does not have to take a transform of two real sequences
simultaneously anymore) should lead to efficient implementations and to a wide range of applications.

_ Zusammenfassung. Ein einfacher Algorithmus zur Berechnung von diskreten Fourier Transformationen (DFT) und diskreten
Cosinus Transformationen (DCT) wird vorgeschlagen. Diese Methode, basierend auf der *Teilen und Losen™ Technik, erlaubt
eine Verkleinerung der Anzahl Additionen gegeniiber gebraiichlichen FFT Algorithmen (30% fiir eine DFT von einem reellen
Signal, 15% fiir eine DFT von einem complexen Signal und 25% fiir eine DCT) und braucht gleichviel Multiplikationen wie
die besten bekannten FFT Algorithmen. Die einfache Struktur des Algorithmus und der Fakt dass er am besten fiir reelle
Signale geeignet ist (man braucht nicht mehr gleichzeitig zwei reelle Signale zu transformieren) soliten zu effizienter
Implementierung und zu zahlreichen Applikationen fiihren.

Résumé. Un algorithme simple pour I’évaluation de la transformée de Fourier discréte (DFT) et de la transformée en cosinus
discrete (DCT) est proposé. Cette approche, basée sur la méthode de la “division et solution”, permet une diminution
substantielle du nombre d’additions par rapport aux algorithmes de FFT courants (30% pour une DFT de signaux réels,
15% pour une DFT de signaux complexes et 25% pour une DCT) tout en gardant un nombre de multiplications égal a celui
des meilleurs algorithmes de FFT connus. La structure simple de 1'algorithme ainsi que le fait qu'il s’applique bien aux
signaux réels (il n’y a plus besoin de prendre la transformée de deux signaux réels simultanément) devraient conduire a une
implantation efficace ainsi qu'a un large champ d’applications.

Keywords. Fast Fourier transform, fast cosine transform, transforms of real data.

1. Introduction

Since the rediscovery of the fast Fourier transform (FFT) algorithm [1, 2] for the evaluation of discrete
Fourier transforms, several improvements have been made to the basic divide and conquer scheme as for
example the mixed radix FFT [3] and the real factor FFT [4, 5]. The introduction of the Winograd Fourier
transform (WFTA) [6], although a beautiful result in complexity theory, did not bring the expected
improvements once implemented on real life computers [7], essentially due to the large total number of
operations and to the structural complexity of the algorithm.

The fact that most FFT’s are taken on real data is seldom fully taken into account. The algorithm using
a FFT of half dimension for the computation of a DFT on a real sequence [8] uses substantially more
operations than the method of computing a single FFT on two real sequences simultaneously [9]. The
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latter method has the disadvantage that one has to take two DFT’s at once and that the sorting of the
output uses additional adds. The fact that the input and output sequences are real is used explicitly in a
real convolution algorithm [10] where the DFT and inverse DFT are computed with a single complex FFT.

Another transform that is mostly applied to real data is the discrete cosine transform. Since the
introduction of the DCT [11], the search for a fast algorithm followed two main different approaches.
One was to compute the DCT through a FFT of same dimension [12], where one is bound to take two
transforms simultaneously. The other was a direct approach, leading to rather involved algorithms [13].
It should be noted that the former technique outperforms all the latter ones when using optimal FFT’s,
a fact often left in the dark [14].

Recently, evaluation of signal processing algorithms has shifted away from multiplication counts alone
to the counting of the total number of operations, including data transfers [15]. This is due to the fact
that the ratios (multiplication time)/(addition time) and (multiplication time)/(load time) are close to one
on most computers and signal processors. Another growing concern has been the generation of time
efficient software [16], and finally, the efficiency of an algorithm turns out to be a non-trivial combination
of the various operation counts as well as of its structural complexity [17].

In this communication, we address an old problem, namely, the efficient evaluation of DFT’s and DCT’s
of real data. Efficiency is meant in the sense of nfinimal number of multiplications and additions as well
as in the sense of structural simplicity. As it turns out, the two problems are closely related, since a DFT
of dimension N can be evaluated with two DCT’s of size N/4 and since a DCT of size N can be evaluated
with a DFT of size N and additional operations. The same technique can be applied again to the reduced
DCT of size N/4 and to the DFT of size N, and this until only trivial transforms are left over (N =1, 2).

This leads to an elegant recursive formulation of the two algorithms and to a number of multiplications
identical to the best FFT’s while diminishing substantially the number of additions (typically 30%).
Interestingly, this last saving is partly kept when computing complex DFT’s, and as an example, the total
number of operations for a 1024-point transform is nearly 10% below the number of operations required
for a 1008-point WFTA. The prime factor FFT (PFA) requires about the same number of operations [18],
but has a more complex structure.

Note that the algorithms below were developed while searching for an efficient way to compute DCT’s
of real data. The derived FFT algorithm for real data that follows immediately requires a number of
multiplications identical to the one found in [19] (which is a variation of the Rader—Brenner algorithm),
and a total number of operations that can be found in [20]. While obtaining an identical complexity, the
derivations are quite different and the algorithm below seems more suitable for programming.

Section 2 is used to derive the general algorithm and Section 3 evaluates its computational complexity.
In Section 4, the results are compared to other algorithms and some implementation considerations are
addressed.

2. Derivation of the algorithms

Let us define the following transforms of the length- N real vector x with elements x(0), x(1) - - - x(N —1):

Discrete Fourier transform

N-1
DFT(k, N, x) = z x(n) . e_jz'ﬂ'"k/N, k

n=0

[
L
Z
[
—_

(M

where j= +V-1.
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Discrete cosine transform

NI 2n(2n + 1k
DCT(k, N, x):= Y x(n)~cos(ﬂ—(£N—)>, k=0,..., N—- 1L )
n=0

Cosine DFT

cos-DFT(k, N, x) = Ni' x(n) cos(

n=0

2wnk
k=0,..., N—-1. 3
N), b k] ()

Sine DFT

§in-DFT(k, N, x)= T x(n)- sin(2

n=

k
kil ) k=0,...,N—1. (4
N

Note that in the definition of the DCT, the normalizing factor 1/\/5 at k=0 is omitted for simplicity.
While the transforms are usually only defined for k=0, ..., N — 1, one will see that other values are useful
as well and can easily be obtained from the ones defined above.

Obviously, the following relations hold:

DFT(k, N, x) = cos-DFT(k, N, x)—j sin-DFT(k, N, x), (5)
DCT(N, N, x)=0, (6)
DCT(—k, N, x) = DCT(k, N, x), (7)
DCT(QN —k, N, x)=—DCT(k, N, x), (8)
cos-DFT(N —k, N, x) = cos-DFT(k, N, x), )
sin-DFT(N — k, N, x) = —sin-DFT(k, N, x). (10)

Looking at the evaluation of cos-DFT(k, N, x), we note that since the cosine function is even:

N2 . dank\  N/a-1 PN 2a(2n+ Dk
cos-DFT(k, N,x)= L x(2n) cos(N/2>+ L (x@n+Fx(N-2n-1) COS<————4_N/4 ) an

or, in a more succinct form:
cos-DFT(k, N, x) =cos-DFT(k, N/2, x,)+DCT(k, N/4,x,), k=0,...,N—1,

with  x,(n)=x(2n), n=0,...,N/2—-1,
(12)
x(n)=x2n+1)+x(N-2n-1), n=0,...,N/4-1,
where (8) or (9) are applied when necessary.

Hence, the cosine DFT of dimension N has been mapped into a cosine DFT of N/2 and a DCT of
N/4, at a cost of N/4 input and N/2 output additions (note that cos-DFT(k, N, x) is evaluated for
k=0,..., N/2 but that k= N/4 does not require an output addition). The cosine DFT of N/2 can be
handled similarly (and this until the transform becomes trivial) and the case of the DCT will be treated
below.

Turning to the sine DFT, we take a similar approach, using the fact that the sine function is odd.

N/2-1

sin-DFT(k, N, x)= go x(2n) - sin(??ﬁ) +N/24;' (x2n+1)—x(N-2n-1))- sin(%). (13)
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Using the following identity:

sin(Zw(ZnN+ l)k) =1y Cos(21r(2n + ll)\iN/4- k)), (14)
we can rewrite (13), using (8) or (10) when necessary, as:

sin-DFT(k, N, x) =sin-DFT(k, N/2,x,)+DCT(N/4-k, N/4,x;), k=0,...,N—1,
with x;(n)=(-1)"-(x@n+1)—-x(N-2n-1)). (15)

Therefore, the sine DFT of dimension N has been mapped into a sine DFT of N/2 and a DCT of N/4,
at the cost of N/4 input and (N/2)—2 output additions (note that sin-DFT(k, N, x) is evaluated for
k=0,..., N/2but that k=0, N/4 and N/2 do not require any output additions). The sine DFT of N/2
is handled in a similar fashion until the length is reduced so that the transform becomes trivial.

We now focus our attention on the computation of the DCT. Using the following mapping [12]:

x4(n)=x(2n),

(16)
XJ(N-n—-1)=x2n+1), n=0,...,N/2-1,
the DCT can be evaluated as:
Nl 2w(4n + 1)k
DCT(k, N,x)= ¥ x4(n)-cos(—1(-—4%\7—)~), k=0,...,N—1. (17)
n=0

Using basic trigonometry, (17) becomes:

2nk . 27wk .
DCT(k, N, x)=cos N cos-DFT(k, N, x,)~sin anN) sin-DFT(k, N, x,), k=0,..., N—-1.

With the symmetries of trigonometric functions, (18) can be computed as follows:

2wk . [2wk
[ DCT(k, N, x) ]_ °°S<4_N> —Sm<—47v—> [cos-DFT(k, N,x4)] o N/l
DCT(N—-k N,x)} Sin(@) OS(z_n_k> " sin-DFT(k, N, x,))’ =0, N
4N 4N
and
DCT(N/2, N, x) = cos(m/4) - cos-DFT(N/2, N, x,). (19)

The matrix product in (19) can be evaluated with 3 multiplications and 3 additions (instead of 4
multiplications and 2 additions) [9] as follows:

2wk . (27k
Py =cos AN +sin N

- sin(22) o (2)
po=sin{ 5 os\ 7v /)’

s, =cos-DFT(k, N, x,) +sin-DFT(k, N, x,),

. (211'k)
=S . —_—
my = s, - cos| ),
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m,=sin-DFT(k, N, x,) * p\,
m;=cos-DFT(k, N, x,) * p,,
DCT(k, N, x)=m, —m,,
DCT(N =k, N, x)=m, +m;, (20)

where p, and p, are precomputed. Using all simplifications, the computation of (19) requires therefore a
total of (3N/2)—2 multiplications and (3N/2)-3 additions.

Thus, we have shown how to map a N dimensional DFT into two DCT’s of N/4 (5,12 and 15) and
how to map a DCT of N into a DFT of same size (16 and 19). In other words, since the DCT is computed
through a DFT, it is shown how to compute a DFT of N with 2 DFT’s of N/4 plus auxiliary operations,
and this operation can be repeated until N has been reduced sufficiently so as to lead to trivial transforms.
Figures 1 to 4 try to visualize schematically the interaction of the various transforms. Combination of
these figures in appropriate order show how to compute a transform of any dimension.

DFT(N)

coss-DF T (N) si\DFT(N)

2 y

Fig. 1. Decomposition of a DFT of size N into a cosine DFT of size N and a sine DFT of size N.

cosDFT (N)

cosDFT(N2) DCT (W

2 J

Fig. 2. Decomposition of a cosine DFT of size N into a cosine DFT of size N/2 and a DCT of size N/4.
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A\

sINDFT (N)

sSINDFT (N2) DCT (NG

2 2

Fig. 3. Decomposition of a sine DFT of size N into a sine DFT of size N/2 and a DCT of size N/4.

DET(ND

cos-DET (N) sINDFT (N

2 )

Fig. 4. Decomposition of a DCT of size N into a cosine DFT of size N and a sine DFT of size N plus auxiliary operations.

The algorithm is best suited for DFT’s on real data, but if the input is complex, one simply takes the
real and imaginary parts separately (thus doubling the computational load) and evaluates the output with
2N —4 auxiliary adds (k=0 and N/2 require no additions).

3. Computational complexity

Even if the derivation above used only the fact that N was a multiple of 4, the algorithm, as other
divide and conquer schemes, performs best when N is highly composite, typically a power of 2.

Below, we restate the number of operations required for the various steps needed in the evaluation of
the transforms, where Oy, [ -] and O4[-] stand for the number of multiplies and adds respectively.

Signal Processing
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DFT on length-N real data:
Oum[R-DFT(N)] = Oy, [cos-DFT(N)] + Oy, [sin-DFT(N)],
OA[R-DFT(N)] = O4[cos-DFT(N)]+ O4[sin-DFT(N)].
DFT on length-N complex data:
Oum[C-DFT(N)]=2 - (Op[cos-DFT(N)]+ Oy [sin-DFT(N)]),
OA[C-DFT(N)]=2 - (Oa[cos-DFT(N)] + O,[sin-DFT(N)]) +2N ~ 4.
DCT on length-N real data:
Oum[DCT(N)] = Ops[cos-DFT(N)]+ Oy, [sin-DFT(N)] +(3N/2) -2,
OA[DCT(N)]= O4[cos-DFT(N)] + O,[sin-DFT(N)]+(3N/2)-3.
Cosine DFT on length-N real data:
Op[cos-DFT(N)] = Oy [DCT(N/4)] + Ops[cos-DFT(N/2)],
Oalcos-DFT(N)] = O4[DCT(N/4)]+ O,[cos-DFT(N/2)] +(3N/4).
Sine DFT on length- N real data:

Owm[sin-DFT(N)] = Oy, [DCT(N/4)] + Oy, [sin-DFT(N/2)],

O.[sin-DFT(N)] = O.[DCT(N/4)] + O,[sin-DFT(N/2)] + (3N /4) - 2.

273

21)

(22)

(23)

(24)

(25)

From (21)—(25) one can compute recursively the number of operations needed for the various transform
types and sizes greater than 2. For N =1, no operations are required, and the values for N =2 are given

in (26), thus defining the initial conditions for the above recursions.

Oum[R-DFT(2)] = Oy [C-DFT(2)] = Oy [cos-DFT(2)] = Op[sin-DFT(2)] =0,

Om[DCT(2)] =1,

O.[R-DFT(2)] = O4[DCT(2)] = OA[cos-DFT(2)] =2,
O.[C-DFT(2)]=4,

O,[sin-DFT(2)]=0.

(26)

But, when N is a power of 2 and that the recursions are therefore applied Log, N times, the operation

counts for the DCT reduces simply to:
Ou[DCT(N)]= N/2 - Log, (N),
OL[DCT(N)]= N/2-(3 Logs(N)—-2)+1.

From (27) it follows immediately with (21)—(23) that:
Oy{R-DFT(N)]=N/2 - (Log:(N)-3)+2,
OA[R-DFT(N)]=N/2- (3 Logy(N)—5)+4,

27)

(28)
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and
Oy [C-DFT(N)]= N- (Log,(N)—3) +4,
(29)
OL[C-DFT(N)]=3N-(Log,(N)—1)+4.

The above closed form expressions can now easily be compared to existing algorithms.

4. Comparison with existing algorithms

First, the introduced algorithm (which is called in the following fast Fourier-cosine transform or FFCT)
is compared to other algorithms which work directly on real data. Then we look at the case where
two transforms on real data are taken simultaneously with an optimal FFT algorithm. The case of the
FFT on complex data is investigated as well, and the issue of algorithm structure is addressed. The
operation counts for FFT’s are taken from [9] unless otherwise specified.

For the computation of a DFT on real data, one can use the algorithm based on an FFT of N/2 [8].
Using again the 3 mult/3 adds approach for the auxiliary output operations, one gets the following
complexity:

On[FFT(N)}= Ou[FFT(N/2)]+(3N/2)-2,
OL[FFT(N)]= O[FFT(N/2)] +(9N/2)-2.

(30)

Table | compares this result with the FFCT and shows the substantial savings that are obtained.

Table 1

Comparison of direct computation of a DFT on real data with a FFT of N/2 or
the FFCT algorithm (the FFT of N /2 is computed with the Rader—Brenner algorithm)

size FFT of N/2+ops. FFCT algorithm

N real mults real adds real mults real adds
8 10 42 2 20
16 26 122 10 60
32 66 290 34 164
64 162 710 98 420
128 386 1678 258 1028
256 898 3870 642 2436
512 2050 8766 1538 5636
1024 4610 19 582 3586 12 804
2048 10 242 43 262 8194 28 676

Turning to the DCT, one can compare the FFCT to fast discrete cosine algorithms which perform the
transform directly, without going to the FFT (and therefore to the need to perform 2 transforms on real
data at the same time). The various operation counts are shown in Table 2. The number of multiplications
for the FFCT is always below the other algorithms, and even if the number of additions is slightly above
the Chen et al. version, the total number of operations is always substantially less.
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Table 2

Comparison of direct computation of a DCT on real data with the algorithms of Chen et al. [13], Wang et al. [14]
and the FFCT (the operation counts for the two first algorithms are taken from [14])

size Chen et al. Wang et al. FFCT
N r. mults r. adds r. mults r. adds r. mults r. adds
8 16 26 13 29 12 29
16 44 74 35 83 32 81
32 116 194 91 219 80 209
64 292 482 227 547 192 513
128 708 1154 547 1315 448 1217
256 1 668 2690 1283 3075 1024 2817
512 3844 6146 2947 7043 2304 6401
1024 8708 13 826 6659 15875 5120 14 337
2048 19 460 30722 14 851 35331 11264 31745

The other general approach to transforms on real data is to compute simultaneously the transform of
two real sequences. Beside the drawback that one has always to compute two transforms (otherwise the
approach is suboptimal), the sorting of the output requires about N output additions. The operation count
for a DFT on real data are given below:

Om[R-DFT(N)]=1/2 - Ou[FFT(N)],
€2))
OA[R-DFT(N)}=1/2 - O4[FFT(N)]+ N -2.
Table 3 compares (31) with the FFCT, and, as can be seen, the multiplication count is identical while a
saving of about 30% is made with regard to additions.

The situation is quite similar when computing a DCT with an FFT [12]. It is assumed that 2 DCT’s on

real data are evaluated at the same time. Thus, the operation count is:

Om[R-DFT(N)]=1/2 - Oy[FFT(N)]+(3N/2)-2,
OL[R-DFT(N)]=1/2 - O5[FFT(N)]+(5N/2)-5.

(32)

Table 3

Comparison of the computation of a DFT on real data with an FFT of N on two
data sequences simultaneously and output additions or the FFCT algorithm (the
FFT of N is computed with the Rader—Brenner algorithm)

size FFT of N+adds FFCT algorithm

N real mults real adds real mults real adds
8 2 32 2 20
16 10 88 10 60
32 34 242 34 164
64 98 614 98 420
128 258 1 486 258 1028
256 642 3486 642 2436
512 1538 7998 1538 5636
1024 3586 18 046 3586 12 804
2048 8194 40 190 8194 28 676
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A technique similar to the one used in (23) was used in the computation of the output of the DCT. The
results are compared in Table 4 where it is seen that the additions are reduced in the FFCT by about
25% with an identical number of multiplies.

Table 4

Comparison of the computation of a DCT on real data with the algorithm using
an FFT on two data sequences simultaneously or the FFCT (the FFT is the
Rader-Brenner version)

size FFT of N +ops. FFCT algorithm
N real mults real adds real mults real adds
8 12 41 12 29
16 32 109 32 81
32 80 287 80 209
64 192 707 192 513
128 448 1675 448 1217
256 1024 3867 1024 2817
512 2304 8763 2304 6401
1024 5120 19 579 5120 14 337
2048 11264 43259 11264 31745

Turning to the computation of a DFT on a complex input, one can use (29) for the FFCT. The comparison
to the Rader-Brenner FFT is given in Table 5 where the number of multiplies turns out to be identical
while the number of additions is reduced by nearly 20%.

Looking at last at the Winograd Fourier transform, one sees that even if the number of multiplies is
larger in the FFCT case, the total number of operations is smaller for large transforms (for example 5%
for the WFTA(504)/FFCT(512) and 9% for the WFTA(1008)/ FFCT(1024) comparison). Note that the
gain is less in the PFA case (5% and 2% respectively).

Concerning the WFTA and the PFA, one recalls that its main drawback is the involved structure of the
algorithm. Even if the structure of the FFCT is not as straightforward as the radix-2 FFT, it remains
simple (it is similar to the structure of the Rader-Brenner algorithm). In the FFCT, the reduction in the
number of operations is obtained at the cost of additional permutations and data transfers. Even if these

Table 5
Comparison of the Rader-Brenner FFT with the FFCT when applied to complex data

size FFTof N FFCT algorithm
N real mults real adds real muits real adds
8 4 52 4 52
16 20 148 20 148
32 68 424 68 388
64 196 1104 196 964
128 516 2720 516 2 308
256 1284 6464 1284 5380
512 3076 14976 3076 12292
1024 7172 34 048 7172 27 652
2048 16 388 76 288 16 388 61444
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permutations can be grouped with previous ones (for example at the entry of the DCT), the resulting
structure is more complex. But this increase in topological complexity is annihilated by the substantial
decrease in arithmetic complexity.

Looking at the implementation, one sees the importance of using very efficient small transforms. Together
with the explicit coding technique [16], this should lead to fast code for real transforms, especially on
micro and signal processors, where the number of arithmetic and data registers is small (leading to
unefficient implementations of the complex transform on two real sequences version).

5. Concluding remarks

We have introduced a simple, recursive algorithm for the computation of the discrete Fourier transform
and the discrete cosine transform. First, this algorithm can be applied directly to real data, providing
therefore an attractive alternative to the method using a complex transform of two real sequences. Secondly,
it uses the same number of multiplies as the best structured FFT algorithms but decreases the number of
additions by about 25 to 30% for DFT’s and DCT's on real data and by nearly 20% for DFT’s on complex
data when compared to currently used algorithms. At last, its structure is simple enough so that it should
lead to efficient implementations.

It is worth noting that the proposed algorithm, while leading to the same computational complexity
for the FFT as the one in [20], is not isomorphic. Interestingly, the algorithm in [20] has been around for
15 years but was seldom referenced and even less used. Meanwhile, literature was published on amelior-
ations of the Cooley-Tukey FFT which leads to less efficient algorithms than the one in [20].... More
recently, actually just as the final copy was being sent to the publisher, yet another algorithm appeared
that leads to the same complexity for the complex FFT [21].

Investigations are under way in order to generalize the above ideas to other sinusoidal transforms and
to higher dimensions, as well as to prove the efficiency of an implementation.
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