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Abstract. Splitting a signal into N filtered channels subsampled by N is an important problem in digital signal processing.
A fundamental property of such a system is that the original signal can be perfectly recovered from the subsampled channels.
It is shown that this can always be done, and that FIR solutions exist. This is done by mapping the NM-dimensional nonlinear
problem (where N is the number of channels and M the length of the FIR filters) into an M-dimensional linear problem.
For N =2, a general class of FIR solutions is derived, together with methods to find filters. The dual problem of mixing N
signals into one channel upsampled by N is also addressed. Several applications are proposed. All results are obtained by
looking at the N filter bank as a true N channel system, rather than N separate channels.

Zusammenfassung. Die Aufspaltung eines Signals in N Kanile, die jeweils N-fach unterabgetastet werden, ist ein wichtiges
Problem der Signalverarbeitung. Eine grundlegende Eigenschaft solch eines Systems ist es, daB das Originalsignal unverzerrt
aus den unterabgetasteten Kanalsignalen rekonstruiert werden kann. Es wird gezeigt, daB dies stets gelingt und daB es
FIR-Losungen gibt. Dazu dient eine Abbildung des NM-dimensionalen, nicht-linearen Entwurfsproblems (wobei N die
Kanalzahl und M die Filterlinge ist) auf ein M-dimensionales, lineares Problem. Fiir den Fall N =2 wird eine allgemeingiiltige
Klasse von FIR-Lésungen hergeleitet. Zudem werden Verfahren zum Auffinden der Koeffizienten angegeben. Das duale
Problem wird ebenfalls behandelt: Es besteht darin, N Einzelsignale nach N-facher Erhéhung der Datenrate zu einem
Gesamtsignal zu vermischen. Verschiedene Anwendungen werden vorgeschlagen. Alle Ergebnisse beruhen darauf, daB nicht
jeder einzelne der N Kandile, sondern die Filterbank wirklich als N-Kanal-System betrachtet wird.

Résumé. La séparation d’un signal en N canaux sous-échantillonnés d’un facteur N est un probléme important en traitement
numérique des signaux. Une propriété fondamentale d’un tel systéme est que le signal original puisse étre reconstruit
parfaitement a partir des canaux sous-échantillonnés. 11 est montré dans la suite que ceci est toujours possible, et que des
solutions RIF existent. Celles-ci sont obtenues en transformant un probléme non linéaire de dimension NM (ol N est le
nombre de canaux et M la longueur des filtres RIF) en un probléme linéaire de dimension M. Pour N =2, on dérive une
classe générale de solutions RIF, ainsi que des méthodes pour trouver des filtres. Le probléme dual du multiplexage de N
signaux en un signal de fréquence d’échantillonnage N fois plus élevée est également considéré. Plusieurs applications sont
proposées. Tous les résultats sont obtenus en considérant le probléme des bancs de N filtres comme un probléme & N
dimensions plutSt que N problémes séparés.

Keywords. Filter banks, multirate systems, decimation, interpolation, quadrature mirror filters.

1. Introduction

Let us first briefly state the basic problem we want to solve. Suppose an infinite sequence of samples
x(n). This sequence is filtered into N sequences yo(n) ... yny_;(n) (with linear, time invariant filters). The
sequences y;(n) are subsampled by a factor N, that is only every Nth sample is kept, or y/(n) = y;(Nn).
Now, the problem is to recover x(n) from the subsampled sequences yi(n) (see Fig. 1).

Obviously, there is the same number of samples per unit of time in x(n) and in all the y!(n) together,
thus a solution should exist. Nevertheless, there were not many practical solutions to the problem up to
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Fig. 1. General problem statement. Can the initial signal be recovered from the subsampled channel signals?

recently. On the one hand, the downsampling/upsampling process creates aliased versions of the original
signal (unless perfectly sharp bandpass filters are used before subsampling, leading to infinitely long
filters) which have to be cancelled in the reconstruction process, but, on the other hand, the original signal
appears filtered at the output (and this filtering has to be cancelled, which might be impossible for stability
reasons).

The work on subsampled filter banks was initiated by the introduction of the quadrature mirror filter
concept [5, 6,7, 8]. The two channel QMF filter bank, while not solving the problem perfectly, annihilates
the aliasing perfectly, a very useful feature in speech processing [3]. The work on efficient implementation
of filter banks started with the computation of the transmultiplexers by polyphase networks and FFTs
[1]. The merging of the two approaches was first proposed by Nussbaumer [13] and was further investigated
by many authors [12, 15, 16, 20, 30]. The first perfect FIR solution for the two channel subsampled filter
bank was proposed by Smith and Barnwell [22] and Wackersreuther [29]. The matrix notation we developed
to address the general case [28] was also independently introduced by Ramstad [19] and Smith and
Barnwell [23]. Thorough treatments of the filter bank problems were done by Vary and co-authors
[9, 25, 26].

The main results appearing below are briefly stated hereafter:

- emphasis is put on FIR analysis and FIR synthesis filters, because IR solutions lead to implicit pole/zero
cancellations,

- a general class of FIR solutions for N =2 is derived,

- linear phase solutions are shown to exist,

- two new methods to generate FIR filters that will satisfy the perfect reconstruction requirement for

N =2 are developed,

- for N > 2, the NM-dimensional nonlinear problem (with M being the filter length) that has to be solved
to find FIR solutions is shown to reduce to an M-dimensional linear problem,

- solutions are shown to exist and a method to find them is given,

- it is shown that aliasing can always be cancelled,

- the case where the N filters are derived from a single prototype filter by frequency shifting is shown
to only have an IIR solution,

- the dual problem of mixing N signals onto a single channel upsampled by N is solved.

All these results (except the aliasing cancellation property and one design procedure [29]) are, to our

knowledge, original. Most results are obtained by using a general polyphase representation of the filters

appearing in a subsampled filter bank and by reducing the general problem to the analysis of the determinant

of the polyphase filter matrix. While a matrix notation was also used in [19, 23], this generalized polyphase

representation seems to be original. As applications, a subband coder incorporating linear prediction, a
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scrambling scheme for analog signals, noncritically subsampled filter banks and filter banks on finite fields
are proposed.

The outline of the paper is the following: Section 2 states the general problem and two known but
unpractical solutions. Section 3 thoroughly investigates the two channel case (which is simple yet important
in practice). Section 4 looks at the general case, and shows that FIR solutions for both the analysis and
synthesis can exist. Section 5 looks at the dual problem which is closely related to the initial one. Section
6, finally, proposes a couple of applications. Appendix A shows that only FIR analysis and synthesis does
not produce implicit pole/zero cancellation and Appendix B gives some more results on the two channel
case.

In the following, all signals and filters are assumed to be complex unless specified otherwise, for
simplicity and generality reasons only. Note as well that both filters and matrices (or vectors) use the
numbering starting from 0 to N —1 (N being the dimension), which is unusual for linear algebra, but
makes notations more coherent and simple.

2. The problem and two obvious solutions

In Fig. 1, the problem addressed below is stated pictorially: the signal x(n) with z-transform X (z)
[17, 18] is filtered into N channels, which are then subsampled by N. Can the original signal be recovered
from the N subsampled channels? In order to solve the problem stated in Fig. 1, we consider the system
depicted in Fig. 2. There, the operations in the analysis part have been matched by equivalent operations

x(n)

Fig. 2. Solution to the general problem involving upsampling and interpolation.

in the synthesis part in order to recover the initial signal. The function N| means subsampling by N, that
is replacing the sequence x(n) by the sequence x'(n) = x(nN). In the z-domain, this can be shown to be
equal to [4, 21]

X'(z)=(1/N) ':i; X(WHNY W= /N, (1)

The function N1 means upsampling by N, which corresponds to replacing x'(n) by x"(n)=x'(n) for
n=IN, and zero otherwise. This leads to the following z-transform:

X"(z)=X'(z™). (2)

Actually, the cascading of subsampling and upsampling by the factor N corresponds to the modulation
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of the sequence x(n) by the function /(n) given by
N-1 "
I(n)=(1/N) ¥ W™, (3)
k=0
which gives the following z-transform for x"(n) = x(n)I(n):
N-1
X"(z)=(1/N) ¥ X(W'z). (4)
k=0

Thus, downsampling and subsequent upsampling of a signal produces an output containing the signal
itself as well as N —1 aliased versions (which are undesired).

In order to reproduce the input signal exactly at the output in the system of Fig. 2, one can use perfect
bandpass filters (infinitely sharp and nonoverlapping) with a bandwidth of 1/ N (assume a normalized
sampling frequency of 1). Then, subsampling by N is allowed (since no spectral overlapping occurs).
After upsampling, interpolation with the perfect bandpass and subsequent addition of the bands reproduce
the input signal perfectly as can readily be verified. The only problem is that the required filters have to
be infinitely long, otherwise the reconstructed signal is an approximated version of the original signal
only, and, in particular, aliased versions of the original signal will appear in the output signal. In the
above approach, one tried to verify the sampling theorem before subsampling (thus requiring perfect
bandpass filters), and thus the problem was approached on one channel at a time basis. No use was made
of the fact that all channels are computed simultaneously.

Another solution [27], where the simultaneity of the process in the N channels is used, appears when
the analysis filters are of length N (equal to the number of filters). Then, the vector of the subsampled
signals at time n can be seen to be equal to the product of a matrix H with a vector x containing the N
last samples of the input signal ([x(n), x(n—1),..., x(n— N+1)]). The rows of the matrix H are obtained
from the coefficients of the input filters. Similarly, the N reconstructed outputs ([X(n), X(n—1),...,
X(n—N+1)]) are equal to the product of a matrix G with the vector of the subsampled signals. The
matrix G has its columns equal to the coefficients of the synthesis filters (which are also of length N).
Then, if H is invertible (that is, the N analysis filters are linearly independent) and G=H ', it can be
shown that the reconstruction is perfect. The problem here is that length N filters in an N channel filter
bank are in general too short for practical applications.

Thus, the question that will be addressed next is: are there length M FIR filters, N < M < o, that will
allow perfect reconstruction?

At this point, a remark is already appropriate: the first solution above divided the N channel problem
into N separate problems of down-upsampling by N and required therefore infinitely long filters. The
second solution simply solves the problem by looking at all the channels at the same time, and while not
satisfactory because of the short filter length, it is nevertheless perfect. Thus, the N channel filter bank
problem should always be considered as a whole, ¢ N-dimensional problem’, which has to be solved as such.

3. The general two channel case
The two channel case is depicted in Fig. 3. For channel 0, the following holds (using (4) and the
convolution property of the z-transform):

Yo(z) = Hy(2) X(z), (5)
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Fig. 3. Two channel case.

Yi(z) = Ho(2) X (2) + Hy(~2) X (—2)], (6)
Xo(z) = Ho(2) X (2)+ Ho(~2) X (—=2)]Go(2). (7)

Similar relations hold for channel 1. Thus, )2(2) can be written as
X (z) = Y[ Ho(2)Go(2) + Hi(2§G1(2)1X (2) +[ Ho(=2) Golz) + Hy(~2) G\(2)] X (~2)). (8)

The reconstructed signal is therefore a function of the original signal X (z), plus a function of the modulated
signal X(~-z), as shown in Fig. 4 and in equation (9):

X(z) = Fo(2) X (2)+ Fy(2) X (~z), 9)
where

Fo(z) =3[ Ho(2) Go(z) + H\(2) G\(2)], (10)

Fy(2) =3[ Ho(—2)Go(z) + H,(~2) G,(2)]. (11)

A necessary and sufficient condition for perfect reconstruction (since Fy(z) and F,(z) are linear and time
invariant) is that Fy(z) is a pure delay and F,(z) is equal to zero.
In matrix notation, this is equivalent to

[Fo(z>] 1 [ Ho(z)  Hi(2) ] | [Go<z>] ) [z]
Fi(2)] " 2LH(-2) Hi(=2)]) L]~ ] o (12)

f(z) =M(2)g(z)=[z"" 0T, (13)

or

where the meanings of f; M, and g in (13) are obvious from (12). Now, setting

g(2)=M"'(2)[z7" o] (14)
will solve the given problem of exact reconstruction. This is shown in Fig. 5 and the resulting output is

X(2)=[f(2)]"x(z)=z7"X(2), (15)
where

x(2)=[X(z) X(-2)1". (16)

While (14) gives a perfect solution, the problem of existence (causality, type of synthesis filters) has yet
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Fig. 5. Two channel system with perfect reconstruction.

Fig. 4. Equivalent two channel system, where the output is a
linear function of the original and the modulated input.

to be addressed. Consider now the inverse of the filter matrix M(z):

M (z)=(1/A(2))C(2), (17)
where

A(z) =i[Ho(z) Hy(—2) — Ho(—2) Hy(2)] (18)
is the determinant of M(z) and

C(2) _l[ H,(-z) _Hx(z)]

“2l-Hy(~z) H2) (19)

is the cofactor matrix of M(z).

We will consider separately 1/A4(z) and C(z), because 1/A(z) can be seen as a common post-filter for
all synthesis filters (and can thus be applied after summation) but also because 1/A(z) and C(z) lead in
general to different types of filters.

Thus, choose the synthesis filters as

g(z)=C(2)[1 0] (20)
or Gy(z) =1H,(~z) and G,(z) =~3H,(—z). Then, we have the following transmission vector:

f(z)=M(2)C(2)[1 0]"=[4(z) 07", (21)
and the following reconstructed signal:

X(2)=A(2)X(2). (22)

The following general remark can be made.

Remark. Choosing the synthesis filters as the first column elements from the cofactor matrix C(z) of the
analysis filter matrix M(z) leads to the following properties:

(a) The aliasing is perfectly cancelled.

(b) The input/ouput transfer function is equal to the determinant A(z) of the analysis filter matrix.

Several possibilities are now open in order to achieve a perfect input/output transfer function.

(i) Use a post-filter equal to 1/4(z). As shown in Appendix A, this means implicit pole/zero
cancellation, which can lead to numerical problems (besides the fact that care has to be taken when
choosing the analysis filters so that 1/A(z) is a stable filter).
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(ii) Use a post-filter 1/A’(z) such that A(z)/A'(z) is an all-pass filter. This leads to perfect amplitude
reconstruction but to phase distortion.

(iii) Choose the analysis filters in such a way that A(z) is a pure delay, that is, a monomial in z or z~
(a monomial is a polynomial having a single nonzero coefficient). This achieves perfect reconstruction
within a delay, and does not have the problems of (i) or (ii).

In the following, we will look for solutions of the third kind, since they meet all our requirements. As
shown in Appendix A, only FIR analysis and synthesis filters lead to perfect reconstruction without
implicit pole/zero cancellation. Thus, only FIR analysis filters are considered below.

The power of the method shown so far is that the whole problem of filtering/decimation allowing
perfect reconstruction has been reduced to investigate properties of the determinant of the filter matrix
M(z) from (13).

Assume that Hy(z) and H,(z) are FIR filters of length M, and M,, respectively. We define P(z) by

1

M0+M1~2 .
P(z)=Hy(z)H\(-z)= ¥ pz" (23)
i=0
Then, the determinant A(z) is simply given by

M2

A(z) =i P(z) - P(~2)]=2 EO Pz 2, (24)

where M, =3(M,+ M,) when M,+ M, is even and M,=3(My+ M,+1) when M,+ M, is odd.

Now, if the p,;4, are all zero but one (equal to 2), and the p,; are arbitrary, then the reconstruction
will be perfect using the FIR synthesis filters given by (20).

Three methods are now possible in order to derive FIR analysis filters that will allow perfect synthesis
with FIR filters. They are simply different ways to meet the requirement that equation (24) should reduce
to a monomial.

Method 1. The first method is outlined below:
(a) Take a polynomial P(z) satisfying the following conditions:
- degree=My+ M, —2=M 2.
- P,; arbitrary,
P {0, i#k,
e, i=k
(b) Factorize P(z) into its M, —2 factors containing one zero each:

M3

P(z)=dyd, H (Z_1+ai), (25)

where d, and d, are scalar normalizing factors.
(c) Divide the set of zeros into two sets, and this arbitrarily:
M, -2 M -3

P(2)=dy [ (z'+e)dy 1] (z'+a). (26)

I=My—1

(d) Set Hy(z) and H,(z) equal to

H(o)=do 11 G7va),  Hi)=d, 1 (= +a). (27), 28)
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From this construction, we have
A(z) =i Ho(z)H\(=z) = H(=2)H\(2)] =3[ P(z) - P(—2)] =z **"}, (29)

and thus, using Go(z) = $H,(~z) and G,(z) = —1Hy(—z) as in (20), we find X(z) = X (z)z~*"! at the output.

That this construction can produce reasonable filters is shown in a simple example. Take a perfect
halfband filter [18] whose z-transform is given by

H(z)=2 Y sin(im)/Cim)z~" (30)

i=—00

Truncate it below —2k —1 and above 2k +1, apply a window if desired and delay it by z >*7". The resulting
filter H'(z), given as

4k+2 .
H'(z)=2 Y sin(3(i=2k—1)w)/G(i—2k—1)mw)z ", (31)
i=0
has the required property described in (a), namely
H'(z)-H'(-z)=4z"%1, (32)
Factorizing H'(z) into its 4k+2 zeros, grouping conjugate pairs, and distributing the pairs and zeros

among Hy(z) and H,(—z) will produce a low-pass (H,) and a high-pass (H,). This produces a perfect
system in the sense described above.

Method 2. Another simple method is to choose Hy(z) and then derive H,(z) by solving the following
equation:

A(z) =i[Ho(z) H\(~2) = Hy(~2) H,(2)] = z7*7", (33)

where k can be arbitrarily chosen within the range 0, ..., M —2 (if we assume that both Hy(z) and H,(z)
are length M filters). Then, (33) leads to a set of M —1 equations of the following form:

M
oy hey O 0 0 o [ ho | [o
hos hop hoy hoo O el 0 —hy, 0
0 :
0
M-19| : ol hee =2, (34)
of
0 .
0 hO,M—2 hO,M73 hO,M—4 hl,M—2 0
L L 0 v 0 ho,M—l hO,M—ZJ __hl,M—lJ LO_

where h;; means the jth coefficient of the ith filter (here, we assume both k and M to be even). Choosing
one of the coefficients of Hy, for example h,, equal to 1, leads to an equivalent 3et of M —1 equations
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for the M —1 unknowns h, 4, ..., hy poq:

M-1
N 4 o
[hee 0 0 0 .. 0 —hyy | [o] [y
h0,2 hO,l h0,0 0 PR 0 h1,2 0 h0,3
0 : : 0
: 0
M-13| : ol hee =20 ] B39
0
0 s hO,M~2 hO,M—3 hO,M~4 hl,M—Z 0 0
| o e 00 homa hom—]| |—hiwme] 0] [0 ]

This system is in general solvable. If not, one has to change one or more coefficients of the filter Hy(z)
until the determinant of the matrix in (35) differs from zero.

Since the choice of the arbitrary values in (34) to get (35) can be delicate, it is possible to use a different
method to solve the system in (34). If one has an a priori knowledge of what H,(z) should be, one can
add an equation and thus get M equations for the M unknowns of H,(z). For example, if H,(z) is a
high-pass filter, one can place a zero at z=1 by adding an equation stating that the sum of the h,;’s
should be zero. Of course, this supplementary equation should be linearly independent of the previous
ones, otherwise the system becomes unsolvable.

Method 3. Yet another method is to choose the filters Hy(z) and H,(z) in a class of fiters that will
automatically satisfy the determinant constraint. One such class, proposed in [22, 29], consists in choosing
Hy(z) such that its autocorrelation function has zero even-index samples (except the zeroth term of course).
Assuming H,(z) of length M and setting H,(z) =z M*'Hy(—z""') will satisfy the determinant constraint
automatically as can be verified.

To conclude this section on two channel FIR filter banks, we show in Appendix B the case where one
of the channels is delayed by z™'. Then, the determinant of M(z) is equal to

A(z) =3[ Ho(2) H\(—2)+ Ho(—2) Hy(2)]. (36)

Thus, all results can be carried over by simply noting that A(z) is a polynomial with even-index samples
only, which corresponds to the previously analysed determinant delayed by one sample. Still, by using
the powerful determinant analysis, we show also in Appendix B that there exists a linear phase solution
for the two channel case, but only for even-length filters, where Hy(z) and H,(z) have different symmetry.

4. The N channel case

While the two channel case described above could be treated without using matrix notation, the N
channel case calls for a matrix approach. As will be seen, the representation form of the filter bank
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problem is of crucial importance, and this for the following three reasons:

(a) understanding of the system and physical interpretation,

(b) analysis of the computational complexity,

(c) numerical properties of the system.
Thus, we will introduce different representations of the problem, namely:

(a) the modulated filter matrix M(z), which is the initial representation of the problem of perfect
reconstruction with aliasing cancellation,

(b) the polyphase filter matrix P(z), which gives physical insight into the problem and allows a simpler
mathematical treatment,

(c) the diagonal filter matrix D(z), which appears when the filter bank is obtained from a single
prototype filter by modulation and permits a treatment of the computational complexity.

The various representations are obtained with multiplication by Fourier matrices and can be seen as
basis changes.

Assume a system as depicted in Fig. 2. Similarly to equations (5)-(7), we get, for the ith channel,

)2,-=(1/N)[Nz H,-(W"z)X(W"z)]G.»(z), W=e "7 (37)

0

Now, the reconstructed signal )2(2) is a linear combination of X(z) and its N —1 aliased components
X (W¥*z), or, similarly to (9),

N-1

X(z)= 3 F(2)X(W2), (38)
k=0
where

Fi(z)=(1/N) Nz H(W'2)Gi(2). (39)

Again, we want Fy(z) to be equal to a perfect delay and F;(z), i # 0, to be equal to zero. In matrix notation,
this leads to the following system:

Fy(2) Hiz)  Hiz) ...  Hya(2) Goz) 1 [
O E Y I A B I ) I
Faa(2) Hy(WN"'2) . Hy (W 2)| {Guant)] |0
or
F(z)=M(z)g(z) = u(z), (41)
with
f(z2)=F(2), M, (z)=Q1/N)H(W'2), g(z)=Gi(z), u(z)=[z"0...0].
Again, we assume the Hi(z) to be FIR filters, and we choose g(z) to be
g(z)=C(2)N1 0...0T", 42)

where C(z) is the cofactor matrix of M(z). Then, the reconstructed signal is equal to, similarly to (22),
X(z)=A(z)X(2), (43)

where 4 is the determinant of the filter matrix M(z).
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Similarly to (22) and Fig. 5, the determinant can be cancelled at the output, thus yielding perfect
reconstruction. Note that this implies implicit pole/zero cancellation. If this is undesired (for the reasons
explained in Appendix A), we require that both the analysis and synthesis filters be FIR, and, therefore,
we want the determinant to reduce to a pure delay.

In order to analyse the determinant of the modulated filter matrix M(z), we premultiply M(z) by the
Fourier matrix F and we obtain the polyphase filter matrix representation

P(z)=FM(z), (44)
where:

P;(z)=z7Hy(z"), F,n=W" (45)
and H;(z") is the jth polyphase component of the ith filter, that is, the filter

H,-j(zN)——-hi'j+hi,j+szN+h,-,j+2Nz_2N+- ce (46)
The ith filter H;(z) is related to its polyphase components in the following way:

H(z)= Y 27H,,(z") (47)

J

and, reciprocally,
H;(z")=2/(1/N) ¥ H(W). (48)
k=0

Fig. 6 shows a pictorial representation of the polyphase filter interpretation of the filtering/subsampling
process, and an equivalent figure could be drawn for the upsampling/filtering process.

Now, the determinants 4,(z) of P(z) and 4(z) of M(z) are equal, except for a constant factor given
by the determinant A, of F:

48,(z) = A A(z). (49)
Similarly, the inverses and cofactor matrices are related:

PO =IMEIF, G =2 @R, (50), (51)
Now, we choose the reconstruction filters as

g(z)=Cy(2)[1 1 1...1]" (52)

Then, the transmission vector F(z) becomes
f(2)=M(2)Cy(2)[1 1 1...1]"=4,(z2)M(2)(1/A(z))C(z)F'[1 1 1...1]"
=[4,(z) 0 0...0], (53)
and the reconstructed signal is equal to
X (z) = 4,(2) X (2). (54)

Therefore, we can consider the polyphase filter matrix alone, thus avoiding the matrix M(z) which is
redundant (each filter coefficient appearing N times) and in general complex.
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a)
] Hi(z) —®——*
b)

Hog@
7l H 1,1(ZN)
—
Tt Hj,N-l(ZN)
o
Hj,O(ZI)
—_— H Pl (z")
+
\_ Hip @)

Fig. 6. Equivalence between subsampled FIR filtering and polyphase representation. (a) Initial FIR filter. (b) Equivalent FIR filter.
(c) Equivalent polyphase filters.

Consider the determinant of the polyphase filter matrix P(z). Instead of the usual recursive determinant
formula, we use the one which consists of the sum of all possible products where not two terms are taken
from the same row or column [24]. The determinant of an N X N matrix A becomes the sum of N! terms:

det[A]=) (aO,aal,B T aN—l,y) det[ K, 1, (55)

where K, is a permutation matrix indicating which terms appear in the 6th product. The determinant of
K, is either 1 or —1and «, B, ..., vy are all different (because there are no repetitions). Using this formula
for the determinant, we can write 4,(z) as follows:

Ap(z) = Z_N(Nil)/zg. (Ha,O(ZN)HB,l(ZN) e H‘y,N—l(ZN)) det[ K, ]. (56)
The factor z- VV~Y/2 is obtained because we take an element from each row of the matrix P(z): an

element from the ith row has an associated delay of z* (from (45)) and the product of N elements from
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different rows produces a delay equal to 1xz '---z N*' that is, z7V'V"Y2 The product of the N
polyphase filters in (56) is a polynomial in z~ ", since each polyphase filter is already a polynomial in
z ™. As can be verified, the lowest power of this product is zero, and the highest is N(M — N) when all
N filters are of length M. Thus, the determinant of the polyphase filter matrix P(z) has at most M — N +1
nonzero coefficients, because only coefficients with indexes multiple of N can be different from zero.
Therefore, we can rewrite 4,(z) in the following manner:

Ap(z)zdoZ—N(N—l)/2+dlz-N(N—l)/Z—-N+. . '+dMANZ_NM+N(N+1)/2. (57)

Now, the requirement that the overall transmission should be a delay means that the M — N + 1 coefficients
of A,(z) should all be zero but one. Therefore, M — N +1 equations have to be satisfied, but we have N
filters with M coefficients each, that is, NM unknowns. Note that the z-transforms of the filters are
multiplied with one another, that is, the equations to be solved are nonlinear. In order to reduce these
nonlinear equations to a linear system of equations of dimension M — N+1 with M — N +1 unknowns,
one can perform the following steps:

(a) Choose the coefficients appearing in N —1 columns of P(z), that is, choose N —1 filters (actually,
one could also choose N —1 rows, that is N —1 polyphase components of the N filters).

(b) Choose N —1 coefficients of the last filter (or of the remaining polyphase components).

In this manner, there are only M — N +1 unknowns left, and it can be seen that the corresponding
equations are now linear. Note that the resulting system is not always solvable (depending on the a priori
coefficients), but that these singularities are rather scarce.

As an example, we derive a filter bank for N =3 and M =7. For simplicity, we take the following
analysis filters:

Hy(z)=1+z "+z 2423+ %+ 27+ 278, (58)
Hi(z)=1-z'+z =z +z%~27+27¢, (59)
Hyz)=1+hz "t hoz 2t hyz* + hyz *+ hsz > +27C. (60)

One can verify that the determinant of the equivalent polyphase filter matrix P(z), given as

Ho,o(z3) H1,0(23) H2,0(23)
P(z)= Z_]H0,1(23) ZilHl,l(Zs) ZA1H2,1(Z) s (61)
ZrzHo,z(ZS) 2_2H1,2(23) Z_2H2,2(23)

is equal to

A (2)=3[(hs— 1)z P+ (h = h3)z P+ (hy—hs)z *+(1—hy)z°]. (62)
Setting h, =1, h,=—1, hs=1, h,=1, and hs=1, reduces (62) to

A (z)=3z" (63)

From the cofactor matrix C,(z) we obtain the following synthesis filters (where unnecessary delays were
cancelled):

Go(z)=i1+z ' -z =z + 27 7+278 - 271, (64)
G(2)=4-z"+z—z*+z%-277], (65)
Gy(z)=-1+z72—-z%+2z71]. (66)

Vol. 10, No. 3, April 1986



232 M. Vetterli/ Filter banks allowing perfect reconstruction

Using these filters in a system like the one depicted in Fig. 2 leads to zero aliasing transmission, and the
reconstructed signal is equal to

X(2)=272X(2). (67)

Note that, in this example, Hy(z) and H,(z) are ‘reasonable’, since we could choose them, but that H;(z)
is dictated by solving (62) to a monomial, and can be ‘strange’. Also, there is a problem with the size of
the synthesis filters. Since they are obtained from the cofactor matrix, their length is upperbounded by
(M —1)(N —1)+1 in the worst case, that is, in general much longer than the analysis filters. Only in the
case N =2 they are guaranteed to be of the same length as the analysis filters.

In practice, both for the computational ease and for application reasons, one would like to have filters
which are modulated versions of a single prototype filter H,(z):

hin=W"h, , Hi(z)= H,(W'z). (68), (69)

Thus, if H(z) is a lowpass filter (with a bandwidth of the order of 1/ N), then the H;(z) are bandpass
filters displaced by i/ N.

Unfortunately, when the filters are chosen as in (68) and (69), the determinant cannot be a pure delay
unless N =M (note that in the solution from [22, 29] for N =2, the second filter is modulated but also
time reversed, and thus the method cannot readily be generalized to N > 2).

Consider the polyphase filter matrix in the case when the filters are modulated. Then, P(z) has the
following form:

Pl(z)=W ™z "H (2Y), (70)

where H,, ,(z") is the nth polyphase component of the prototype filter H,(z). Postmultiplying P(z) by
the Fourier matrix and dividing by N yields the diagonal filter matrix D(z), or, expressed in terms of M(z),

Hp,O(ZN) O
z 'H, ,(z™)
D(z)=(1/N)FM(z)F = P (71)
0 27N+1HP’N_1(ZN)
Now, the determinants of D{z) and M(z) are equal except for a sign factor:
A(z), [3N+1)] odd,
A = 72
«2) {—A(z), BN+1)] even, 72
as can be verified by evaluating the determinant of the Fourier matrix. Now, A44(z) is equal to
N-1
Ag(z) =z NNV T H (27), (73)

i=0

and, in order for 44(z) to be a monomial, all the factors of the product in (73) have to be monomials.
Thus, H,(z) cannot have more than N nonzero coefficients (actually, it requires exactly one nonzero
coeflicient in each polyphase filter, otherwise A4(z) is either zero or not a monomial).

If we allow infinite impulse response (ITR) synthesis filters, we can invert D(z) and use the following
synthesis filters:

g(z)=z"N"[M(z)]"'[1 0...0]"
=z V[ Hyo(z™)17 (27 Hph (2™ o L2 Y H v (217, (74)
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from where the reconstructed signal )2(2) follows to
X(2)=z"V"X(2). (75)

Note that, in (74), it is required that [D(z)] ' is stable, or that each polyphase filter has its zeroes strictly
within the unit circle.

Of course, in the case of modulated filters, both the analysis and the synthesis filter bank can be
computed with reduced computational complexity, by using the polyphase/FFT approach first introduced
in [1]. In the analysis filter bank, one has to compute the following result:

Yo(z) H,o(z") z 'H,,(z") z7NTH, v (2Y) X(z)

le(z) _ HP,O:(ZN) Wﬁlzﬂ:Hp,l(ZN) W7N+127N+21HP,N71(ZN) ) X(Z) ’ (76)
Yn_1(2) H,o(z") ' X&Z)

which is equal to
Yy(z2) 1 1 1 H,o(zV)X(z)
Yi(z) | |1 w wh-1 z7'H,,(zV) X (2)
N | : , (77)

Yool 1w ZNUH (2N X (2)

or, assuming that the prototype filter length is a multiple of N such that M = kN, the computational load
per set of subsampled output samples is equivalent to the evaluation of N polyphase filters of length k
as well as an FFT of size N.

In the case of the synthesis filter bank, the output )2(2) is obtained from the channel signals Yj(z) in
the following way:

X(2)=[g) [ Yi(z) Yi(z) ... YN o(D]"
=z N1 1...1][D(2)] 'F[Yo(z) ... Yn_ ()], (78)

that is, with a Fourier transform and N all-pole filters. Note that the Y(z) have only every Nth sample
different from zero, thus the synthesis requires the same order of complexity as the analysis. Fig. 7 shows
an N channel system with modulated filters computed by Fourier transforms.

If one does not want IIR solutions, one can evaluate the cofactor matrix in order to get FIR synthesis
filters and neglect the determinant. Note that the synthesis filters are also modulated in that case, thus
allowing efficient implementations (even if they are longer than the analysis filters). Of course, approxima-
tions can be made, and especially products of filters which are nonadjacent can be regarded as being
zero. This approach is known as ‘pseudo-QMF" filter banks [12, 13, 15, 20, 30] and atlows both efficient
implementation and quasi-QMF behaviour. While that kind of filters requires further investigation, the
above framework is certainly helpful.

Concluding this section, we recall that the proposed approach always allows the cancelling of the
aliasing in a subsampled filter bank (by choosing the synthesis filters accordingly to the cofactor matrix)
and that FIR analysis/synthesis systems can be found for N >2 and M > N. Finally, the modulated filter
bank case does not have an FIR solution, but has an efficient analysis and synthesis implementation.
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Fig. 7. Modulated filter bank implemented with polyphase filters and DFTs.

5. The dual problem

In the previous sections, we have considered the problem of separating a signal (at sampling frequency
f) into N channel signals (at sampling frequency f/ N) by filtering, in such a way that the original can
be perfectly reconstructed.

In the following, we look at the dual problem which consists of multiplexing N signals (with initial
sampling frequency f) into one signal (at sampling frequency Nf) by filtering, in a way that permits the
perfect reconstruction of the N original signals (Fig. 8). Note that the two obvious solutions from Section
2 hold as well here. Both when the filters are perfect bandpass or length M = N FIR filters, the signal
can be reconstructed perfectly. Again, the interesting case appears for M > N, but not perfectly bandpass.

xo(nN)

xl(nN)

y (n) xi(“N)=xi(“N)?

m(_r.)lN )

Fig. 8. General dual problem statement. Can the initial signals be recovered from the upsampled channel?

The case N =2 is investigated below. Assume a system as depicted in Fig. 9. Then, using (2) and then
(1), the signals in Fig. 9 equal

Xi(z)=X,(z»), i=0,1, (79)
Y(z) = Hy(2) Xo(2%) + Hy(2) X, (22), (80)
XUz2)=G{2)Y(z), i=0,1, (81)
X(2) =X (2" + X (-2, (82)
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xO(2n) XO. Scd
»——@_ By s, %4 x{2n)
y(n)
xl(2n) Xl‘ ;ﬁ'

Fig. 9. Solution to the two channel dual problem.

or, explicitly,

Xi(2) = MGz Ho(z">) Xo(2) + Hi(2"?) X, (2)]
+ G~z Ho(~ 2" Xo(2)+ Hi(—2"*) X (2)]), i=0,1. (83)

Thus, a necessary and sufficient condition in order to recover )e,-(z) equal to X;(z) is the following:

—k P
zZ ., 1=

NGz H(z' %) + Gi(_Zl/z)I_Ij(—Zl/z)]:{ L (84)
0, i#].
Below, for reasons similar to those mentioned in Section 3 and Appendix A, we consider the case where

all involved filters are FIR. Introducing the following notation:
7-‘i,j(Z):I-I!'(Z)Gj(z)s iaj:()’ 17 (85)

it is easy to see that (84) is equivalent to say,

ok .
ﬁnﬁn+nmﬁn=%,’;¢ﬁ (86)
or simply that:
- T,.(z) has a single even-index coefficient different from zero, while having arbitrary odd-index ones,
- T, ;(z), i #}], has all even-index coefficients equal to zero, while having arbitrary odd-index ones.
This has an obvious interpretation: X/(z) has only information on the even-index terms of its z-transform
(being zero otherwise because of the upsampling) and all odd-index terms of )22(2) are disregarded due
to the subsampling. Thus, if the transmission from input i to output i has a single even coefficient and
the transmission from i to j has no even coefficient different from zero, then an impulse appearing (on
even time) at the input of filter i will be transmitted to output i only, and this without distortion. Thus,
the signal at input i is perfectly reconstructed at output i, disregarding a delay.
Calling H,(z) and H,,(z) the polynomials incorporating the even and odd parts of H,(z), that is,

Hi(z)=3[Hi(2)+ H(-2)],  Hi(z)=3[Hi(z)— Hi(-2)], (87), (88)
and noting that (86) includes only the even part of T, ;(z), we rewrite (86) as follows:

1 27 i=j,

2[Hie(z)Gje(Z)+Hio(Z)Gjo(Z)]:{0’ i) (89)
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This leads to the following matrix equation:

H,.(z) Hyo(z) 0 0 Gy.(2) 773k

1H(2) Hoz 0 0 | |Gu2)|_| 0 o0
2l o 0 Ho(z) Hoo(2)| [Gie(z) 0
0 0 I-I_le(z) H,,(2) Gio(2) z 2

Then, it is sufficient to invert the 2 X2 nonzero blocks in (90). For example, G,(z) is obtained from

GOe(Z) _ Hlo(z) _HOO(Z) . Z_Zk:l

[GOO(z)]‘[1/(2A(Z))][—Hle<z) H(,c(z)] [o ’ o1
where

A(z) =3[ Hoo(2)H,o(2) — Hoo(2) H1((2)]. (92)

Now, if A is a delay (actually an odd delay since 4 is an odd function of z) and the output filters are
chosen accordingly to (90) and (91), then both )eo(z) and )?,(z) are equal to X,(z) and X,(z) within a delay.

Note that the matrix in (91) is the cofactor matrix of the 2 X 2 block in (90). A remark is again appropriate
here. Choosing

[GOC(Z) GOO(Z)]T=[H10(Z) _Hle(z)]Tz-la (93)
[Gie(2) GIO(Z)]T:[_HOO(Z) HOe(Z)]Tzi1 (94)

(or respectively as the first and second column of the cofactor matrix) leads to the following properties
of the system in Fig. 9 (note the z™' factor in order to be in phase with the subsampling):

- there is no crosstalk from one input channel to another output channel,

- the transmission of a channel to its output is equal to the determinant of the submatrix in (90) times

z7h

The above method can be extended to the case N >2. Due to the upsampling and subsampling by N,
one is only interested in the transmission at every multiple of N. This leads, through relations similar to
(86)-(90), to the inversion of a matrix of the following form:

Hoo(z) Ho(z) ... Hon_:1(2)
M) =1/ Ny | Frol®) , 95)
HNf-l,O(Z)
where
H (z2)=hz7+hjonz ' N4, (96)

Again, one can choose the synthesis filters as elements of the cofactor matrix (thus eliminating the cross
over), and the determinant can be reduced to a delay, thus allowing perfect reconstruction.

Obviously, the dual and the initial problem are closely related, since both require the inversion of a
polyphase filter matrix. Therefore, the same analysis filters can be used for the initial and the dual problem,
and the synthesis filters in the dual problem can be deduced from the ones of the initial problem by some
scaling and shifting.
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6. Applications

The purpose of this section is not to show impletation results, but rather to point to potential applications.

6.1. Subband coder incorporating an LPC filter

It was shown in Section 3 that, in the two channel case, one could choose one filter, Hy(z), and derive
the other, H,(z), by solving a linear system of equations given in (35). An interesting choice for Hy(z) is
the following:

Hy(z)=1-L(z), 97)
where

L(z)=1z"" v Lz 72+ - o+ Iy 2NV (98)

L(z) is the filter whose current output is the best linear prediction of the current sample value from the
previous N —1 samples [11]. The output of Hy(z) is the so-called residual, that is, loosely stated, the
‘unpredictable’ part of the signal.

Now, H,(z) is evaluated by solving (35). In some sense, the output of H,(z) is the complementary
signal with regard to the residual. Both signals are then subsampled by 2 and the synthesis filters are
chosen according to (20). The system is depicted in Fig. 10. This approach is currently under investigation,
but sufficient results are not yet available to judge the power of the method. The idea is simply to split a
signal into its residual and complementary parts, in a way similar to the splitting into low and high pass
components with a conventional QMF bank. It is hoped that the matching of the filters to the signal
(rather than having fixed filters as in a conventional system) will improve the coding gain without destroying
the quality associated with subband coders. Of course, the process can be iterated, especially on the
complementary signal, since the subsampled residual might be crudely quantized.

M — — = = — — — — -
; . ) : _@ R(z)
i L(2) ]
X(z) L . . d
—_
H @ — @5

Fig. 10. Example of a subband coder using an LPC filter. R(z) is the subsampled residual and C(z) is the complementary signal.

6.2. Scrambling of analog signals

When scrambling analog signals, the bandwidth should not grow. Therefore, methods have been proposed
where the analog signal is filtered into bands which are then interchanged. This can be done in the analog
or in the digital domain. Using the filterbanks developed so far, which allow separation or mixing of
signals permitting exact recovery, one can devise such a scrambling system. Since the filters are not
restricted to bandpass filters, complex functions can be used, which can make decryption even more
difficult. Of course, since the transmitted signal is analog and will be distorted, the reconstruction will
not be perfect.
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The system, depicted in Fig. 11, works as follows. The signal is first split into N subsampled channels
using filters as developed in Section 3. Then, the channels are permuted and mixed together as described
in Section 5. Note that the splitting and the mixing filters could be similar, but are different in general.
At the receiver, the mixing is undone first, then the channels are backpermuted, and, finally, the initial
splitting is undone as well, thus reproducing the original. In Fig. 11, the case for N =4 is shown (for
practical purposes, N should be bigger, of course), using two stages of two filters each. The number of
possible permutations is

N,=N! (99)
PERM.
oo O
— H@ Fol2)
Hy () —(D— —D— [@
Z(_(g)_" P X(2)
Ho(2) —@— —@— Fy@
e @ fw
y () 2D —@— F@

Fig. 11. Example of scrambling. After downsampling and permutation, the signals are recombined to form the channel signal.

6.3. Filter banks with noncritical subsampling

A filter bank is critically subsampled when the output of an N channel bank is subsampled by N.
Noncritical subsampling is the case when the subsampling factor N’ is smaller than N, the number of
channels. In the latter case, we obtain a rectangular system of N’ equations involving N filters instead
of the square system of (40). Obviously, since there are less contraints, solutions will exist as well (ad
absurdum, one could take N — N’ filters equal to zero, and solve (40) of dimension N’). The new degrees
of freedom can be used to meet new, self-imposed constraints. Take as a simple example a two channel
filter bank without subsampling. Then, the only equation to be met is

Hy(2)Gy(2)+ H,(2)G\(2) =27~ (100)

Choosing, for example, Hy(z) = H(z) and H,(z)= H(—z), where H(z) is a length M FIR filter, as well
as Go(z) = G(z) and G,(z) = G(-z), G(z) also being FIR, leads to the following condition:

H(z)G(2)+ H(—z)G(~z) =2z, (101)

This condition can be met using Method 1 of Section 3, for example. Note that the two analysis filters
used here would not work in the subsampled case, but are possible here because there is no aliasing
cancellation to be met. The point here is to simply show that the approach from the previous sections is
quite general and useful for N’ going from 1 to N.
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6.4. Fractional sampling rate change

An interesting application of the initial together with the dual system is the fractional sampling rate
change. Assume, for example, five signals with sampling frequency f that should be multiplexed onto
three channels with sampling frequency 3f. Again, the number of samples per unit of time is the same in
the five input channels and in the three output channels. One solution is to first multiplex the five channels
onto one channel with sampling frequency f' = 5f, and then to demultiplex this channel into three channels,
which yields the desired sampling frequency f”=3f Such a system is depicted in Fig. 12. If the filters
H;(z) and F;(z) meet the requirement of determinants being monomials, a perfect FIR reconstruction of
the original signals can be achieved.

6.5. Filter banks on finite fields

If one really wants ‘perfect’ reconstruction, for example in error detection applications, one can resort
to arithmetic on finite fields [2]. It is not difficult to generalize the methods shown so far to filter banks
on finite fields. To keep things simple, we look at arithmetic modulo a prime number p, that is, to arithmetic
over GF(p). Then, all filter coefficients and signal values belong to GF(p). The z-transform is defined as
usual. For simplicity, we only look at the two channel case. In order to express the down-upsampling by
N, we require an Nth root of unity in GF(p), which means that p must be strictly greater than N. Calling
@ in GF(p) the element such that a’=1 and B such that 8+ 8 =1, we express the down/upsampling
by 2 as

X'(z)=B[X(z)+ X (az)]. (102)

Thus, similarly to (12), we have to invert a matrix M(z) equal to

Mz <| Hol2)  Hi(2) ] (103)
Hy(az) H(az)
Xq(2)
G H@
X (D) (2)
@ ho — Fo@) —G——10°
2224731 22421
X(2) X(2) )
(A W TGS X L Y, (2
X3(2) . 2242241 ) D 2hz42
H3(2) — R0 —D—"%
Fig. 13. Two channel system over GF(3).
Xy (2)
Hy(2)

Fig. 12. Example of a fractional sampling rate change. The
inputs have sampling frequency f and the outputs a sampling
frequency 3 f.
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Its determinant has odd terms only. Thus, if we want it to be a monomial, we start with a polynomial
having arbitrary even terms but only a single nonzero odd term. Then, we factor it into two polynomials
which can be used as filters Hy(z) and H,(z). Of course, the factorization is done in GF(p). Such a simple
system is given in Fig. 13, where all computations are done in GF(3).

Note here that implicit pole/zero cancellation (Appendix A) does not cause problems as in the case
of systems over the field of real or complex numbers. Thus, one could cancel the determinant with an
all-pole filter as well. The generalization for N greater than 2 (when an Nth root of unity exists in GF(p))
follows the same lines as in Section 4, where W is now the Nth root of unity in GF(p).

7. Conclusion

The problem of subsampled filter banks has been addressed by developing an analysis framework.
Using a powerful matrix notation, several new results were obtained, especially for FIR analysis and
synthesis filters. In that case, the N x M nonlinear design problem (where N is the number of channels,
and M the filter length) was shown to reduce to an M-dimensional linear problem. This is obtained by
analysing the matrix inversion (where the matrix elements are polynomials) and, in particular, the
determinant of the matrix.

For N =2, the class of FIR solutions allowing perfect reconstruction has been demonstrated, which
includes the solutions known so far [22, 29], but also new solutions (for example, a solution with two
linear phase analysis filters). Two new methods are given in order to find actual filters. The original QMF
filters [5, 6,7, 8] are shown to be the solution when the synthesis filters are obtained from the cofactor
matrix (but neglecting the determinant), and this method can be generalized to arbitrary N, thus allowing
perfect aliasing cancellation. Furthermore, for N > 2, it is shown that the determinant can be reduced to
a pure delay (by solving a linear system of equations of size M), thus allowing perfect reconstruction
with FIR analysis and synthesis filters. Actual solutions have been shown, but note that while there is no
reason to doubt the existence of a solution for arbitrary N and M, the conjecture has yet to be proven.

The case where the filters are obtained by modulation from a single prototype filter is shown to only
have an IIR perfect synthesis solution, but the efficient polyphase/FFT analysis [1] is extended to a
perfect and efficient synthesis as well.

The dual problem of multiplexing N signals onto a single channel upsampled by N was addressed as
well and shown to be equivalent to the initial problem. Finally, several applications are proposed, among
others a new speech coding scheme and filter banks on finite fields.

In conclusion, looking at the N channel filter bank problem as a global, N channel system has proven
to be fruitful. The design of N ‘simultaneous’ filters is therefore quite different from conventional, single
filter design.
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Appendix A

Below, we prove that a perfect analysis/synthesis system without implicit pole/zero cancellation requires
both FIR analysis and FIR synthesis filters.

First we define what we mean by implicit or explicit pole zero cancellation. By explicit pole/zero
cancellation, we mean numerator/denominator simplications done on the transfer function of a single
filter. This is done before implementing a given filter.

By implicit pole/zero cancellation, we mean numerator/denominator simplifications between two
cascaded or two parallel filters, but where the two filters are physically separated. A cascade example is
given below, where Hy(z) and H,(z) are two separate filters (appearing, for example, in the analysis and
the synthesis part respectively):

Ho(z) H\(2) = [(A(2) B(2))/ C(2)I[ D(2)/(E(z) B(2))] = (A(z) D(2))/ (C(z) E(2)). (A1)
Therefore, B(z) was implicitly cancelled between the two filters. A parallel example would be the following:
Hy(z)+ Hy(z) = (A(2) B(2))/ (C(2)[ A(2) + D(2)]) +(D(2) B(2))/ (C(2)[ A(z) + D(z)])

=(A(2)B(z)+ D(z) B(2))/(C(2)[A(z) + D(z)]) = B(z)/ C(2). (A2)

Here, the factor [A(z)+ D(z)] was implicitly cancelled between the two filters. While explicit pole/zero
cancellation is obviously always permitted, implicit cancellation has two problems associated with it.

The first one is internal stability, that is, a transfer function that is externally stable (from input to
output) may have an unstable part inside [10]. This problem can be avoided by careful analysis.

The second and more fundamental problem for practical realizations is the precision problem. While,
theoretically, the pole/zero cancellation is realized, in a physical system with finite precision arithmetic
the cancellation will in general not be done perfectly. Note that the effect is nonlinear and thus difficult
to track and quantify. While our purpose is not to solve this particular problem, we will try to avoid the
implicit cancellations in the following.

It will be shown below that perfect reconstruction without implicit pole/zero cancellation can only be
achieved when both the analysis and the synthesis filters are FIR.

Consider the input/output transmission Fy(z) from (13):

Fy(z) =H{[Hi(=2)/ A(2)]1Ho(z) — [ Ho(~2)/ A(2)]H\(2)}. (A3)

Explicit pole/zero cancellation can be done, for example, between H,(—z) and A(z) in (A.3), but
cancellation between the two summands in (A.3) are implicit ones since they are physically separated

filters. Similarly, cancellations between Hy(z) and A(z) in the first summand are implicit as well.
Assume now that all explicit cancellations have been made in (A.3). Then we do not want implicit
cancellations between the two summands and we want the transmission Fy(z) to have no poles (except
at infinity or zero, which means time shifts only). Thus, the two summands have to be FIR. Now, we do
not want implicit cancellations between the factors of the summands. Therefore, both factors need to be
Vol. 10, No. 3, April 1986
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FIR, which means that Hy(z) has to be FIR (because it is a factor of the first summand) and that H,(z)
has to be FIR (because it is a factor of the second summand).

Now, the fact of analysis filters being FIR leads to the requirement that the synthesis filters have to be
FIR as well (otherwise, there would be implicit cancellations between the analysis and the synthesis part
of the system). This is achieved when the determinant constraint is fulfilled (4(z) being a monomial)
because then perfect reconstruction is guaranteed with FIR synthesis filters.

Appendix B

Further properties of two channel systems are explored below. First we look at the delayed channel
case, and then we prove that linear phase systems exist only for even length filters where the two filters
have different symmetry.

B.1. Delayed channel case

Assume that channel 1 is delayed by z™' at the input and that channel 0 is delayed by z ' at the output.
Then, X,(z) and X,(z) satisfy the following equalities:

Xo(2) =Y Ho(2) X (2)+ Hy(—2) X (—2)1G(z) ™", (B.1)
Xi(z) =42z 'Hy(2)X(2) - 2 ' Hy(=2) X (- 2)] G\ (2). (B.2)

Thus, Fy(z) and F\(z) are equal to

[FO(Z)] _l[ Hy(z) 27 Hy(z) ] . [Z_lGo(Z)]

F(2)] "2l Hol-2) -z 'H-2])" | G2 (B.3)

and the determinant equals
A(z) =i Ho(2)H\(=2)+ Ho(=2) Hy(2)]z 7. (B4)

4(z) is a function with odd powers of z7' when both Hy(z) and H,(z) are FIR filters.

Consider now the term Hy(z)H,(—z). If this polynomial has arbitrary odd-index terms but only one
nonzero even-index term, then A(z) is a pure delay and the signal can be reconstructed with FIR synthesis
filters as well. This condition is equivalent to the one in Section 3, since it simply means that Hy(z) H,(—z)
is shifted by one sample.

B.2. Linear phase solutions

The perfect FIR solution for the two channel case given in [22, 29] leads to minimum phase filters, but
the question remains: are there linear phase solutions as well? This question is interesting because one
often wants channel signals which are in phase, typically in subband coding applications. Below, we look
at the nondelayed case with two filters of the same length.

A linear phase FIR filter has either a symmetric or an antisymmetric impulse response [18]. We introduce
the function sym[ H(z)] which is defined as follows:

1 if H(z) has a symmetric impulse response,
sym[H(z)]={ —1 if H(z) has an antisymmetric impulse response,
0 if H(z) has no symmetry in its impulse response.
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This function has the following properties:
sym[H(z) G(z)] = sym[ H(z)] sym[ G(z)], (B.5)

sym[ H(z)] if H(z)is of odd length,

—sym[ H(z)] if H(z)is of even length. (B.6)

Sym[H(-Z)]={

When two filters have the same length and the same symmetry, then this symmetry is preserved by addition
of the filters; in other words:

sym[ H(z)+ G(z)]=sym[ H(z)]sym[ G(z)15(sym[ H(z)+sym[ G(z)]). (B.7)

When the lengths are different, the result has no symmetry.
Using this function, we analysis the determinant A(z) given by (17) when both Hy(z) and H,(z) are
length M linear phase filters. Look at Hy(z)H,(—z). When M is odd, because of (B.5) and (B.6) we have

sym[ Ho(z) H,(—z)] = sym[ Hy(z)] sym[ H,(z)]. (B.8)
Since the product filter has odd length as well, we have

sym[ Ho(z) H,(~z)] = sym[ Hy(—z) H,(z)], (B.9)
and therefore,

sym[A(z)] = sym[ H(z)] sym[ H,(z)]. (B.10)

Now, the center of symmetry of 4 is the coefficient with index M —1, that is, an even number. Since 4(z)
is an odd function of z7', the coefficient of z~™*! is zero. All the nonzero coefficients of A(z) appear
therefore twice, that is, A(z) can never be a monomial.

When M is even,

sym{ Ho(z) H(—z)] = (=1) sym[ Hy(z)] sym[ H,(2)]. (B.11)
since the product filter is of odd' length,

sym[Ho(z) Hy(~z)] = sym{ Ho(—2) Hy(2)] (B.12)
or

sym[A(z)] = sym[Hy(z) H(—z)] = (=1) sym[ Hy(z)] sym[ H,(z)]. (B.13)

The center of symmetry is the coefficient with index M —1, an odd number. All other coefficients of A(z)
except the center one appear twice. Thus, in order for A(z) to be a monomial, the (M —1)st coefficient
is the only one that can and must be different from zero. Thus, A(z) should have even symmetry, that is,
Hy(z) and H,(z) should have different symmetry.

In conclusion, one can see that minimum phase filters are not the only solution to the two channel
perfect decomposition scheme. It is possible to derive a two channel system with perfect reconstruction
and using linear phase filters. This is achieved when:

- M is even,

- Hy(z) and H,(z) are of different symmetry.

Obviously, the same type of analysis can be applied to other cases as well (delayed channels, filters of
different lengths, etc.) in order to find the set of possible solutions.
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