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oscillations m within a period are concerned. We characterize a
subharmonic by the ratio n/m.

Suppose p/u < q/v are two successive subharmonics of level
k. Then the double staircase of (k +1)-st level subharmonics is

+ +i
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Note that these sequences of ratios are monotonic.

This law coincides with the law proposed in [1] concerning the
period n, except that the levels are interpreted differently. On the
other hand, our conjecture concerning the number of oscillations
m is new.

V. LocCKING FREQUENCY

In Fig. 6, the ratio n/m is plotted against f, /f;. In principle
all levels are included. However, the steps of the higher levels are
too narrow to be represented faithfully and the dotted lines
simply indicate their presence. Note that the resulting curve is
monotically increasing, because of the monotonic sequences of
subharmonics at each level. This kind of bizarre curve reminds
the devil’s staircase of [3]. However, the presence of chaos implies
holes in the staircase.

It is striking from Fig. 6 that

n/m=f/f. (3
Therefore, the locking frequency of the driven oscillator f, /n
is determined by some rational approximation n/m of f, /f,.

VI. CONCLUSION

The driven second-order oscillator of [1] has been simulated
using a piecewise linear model for the nonlinear resistor. The
simulations have confirmed the extremely complicated pattern of
subharmonic and chaotic solutions already observed in [1]. The
higher precision of the simulations have allowed to go further
down in the fine structure of these phenomena and to confirm
their regularity conjectured in {1]. A more detailed law for the
succession of subharmonics has been found. This law also per-
mits to relate the locking frequency of the driven oscillator to
some rational approximation of the ratio between the driving
frequency and the free-running frequency of the oscillator.
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I. INTRODUCTION

Among time-varying filters, the ones with periodic variations
[4] are both important and simple to analyze. Examples of
periodically time-varying filters are multirate filters, where sam-
pling rate changes by N lead to a periodicity of N [1]. The
simplicity of analysis stems from the fact that N time-invariant
impulse responses characterize completely a periodically time-
varying filter [2], [6] of period N.

In the following we will be concerned with the problem of
inverting a periodically time-varying filter, that is, we will try to
find its input signal given the output signal and the filter charac-
teristic (which we assume to be known). Note that the invertibil-
ity of linear periodically time-varying filters has been addressed
in [5] where a particular class of these filters has been derived so
that they are automatically invertible.

A typical application of the proposed method is aliasing can-
cellation in multirate systems. Because of the inherent periodicity
of such systems, the output often contains not only a filtered
version of the input, but also aliased and thus undesired versions
of it. These aliased versions can be eliminated at the output with
the techniques described below.

II. LINEAR PERIODICALLY TIME-VARYING FILTERS

Described briefly is the analysis framework that will be used in
the following (see [6] for details). The z-transforms of all signals
and filter impulse responses are assumed to exist. A linear
periodically time-varying (LPTV) filter with period N is com-
pletely defined by N impulse responses at times 0,1,---, N—1.
Note that there are several other ways to describe LPTV systems,
but that they are equivalent within a linear transformation. We
call T,,(z) the z-transform of the response to a unit pulse at time
i. Now, the input signal x(n) with z-transform X{(z) can be
decomposed into so-called polyphase components [1] with z-
transforms X,,,(z) given by

o0
X,(z)=z" ¥ x(nN+i)z""".

n=—o0o0

(12)

Note that the signal is equal to the sum of the polyphase
components. The output of a LPTV filter can be expressed as the
superposition of the N impulse responses, each exited by the
adequate polyphase component of the input signal. Using (1), the
output y(n) of the LPTV filter, with z-transform Y(z), can be
written as

¥(z) = [1,(2)] " x,(2) (22)

with:
1,(2) =[To(2) Ty(z) - Tonoi(2)]” (2v)
5(2)=[X0(2) Xu(2)  Xn (D] ()

Because the LPTYV filter is varying with a period N, the output
will contain a filtered version of the input as well as of modulated
versions of the inpout (with modulation by the Nth roots of
unity) [6]. Therefore, another useful decomposition of the input is
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the modulation decomposition, which is given in vector form by
W = e JCQ7/N)_
)

The polyphase and the modulation decomposition are related
by [6]:

x,(2) =[X(2) X(wz)--- x(WN2)]",

x,(z) =%F~xm(z) )

where F is the usual discrete Fourier transform matrix with the
i, jth element equal to W'/ (rows and columns are enumerated
starting from 0). From (4), (2a) becomes

Y(z) =%[tp(z)] T.Fx,(z). (%)

Let us define
t,(z) = [Tmo(z) Ta(z) - TmN—l(z)]T = (1/N)F'tp(z)~
(6)

Then, (5) can be rewritten similarly to (2a) as
¥(2) = [ta(2)]"-%a(2). (7

III. INVERTIBILITY CONDITIONS

The first step in order to invert a periodically time-varying
filter consists in deriving a postfilter such that the time-variance
is annihilated. The approach taken is to expand the output signal
y(n) into its modulation components. The modulation expansion
of Y(z)is

ya(2) =[¥(2) Y(Wz)---¥(W )] ()

Now, (8) can be written as

Yu(2) =T,(2) x,(2) (8a)
where
T.(2)
T0(2) Ta(2) Tv-1(2)
~ Tov-1(Wz) T,.0(Wz) Tnv—2Wz)
T .(WN~12) T, (wVlz) T,o(Wh~1z)
(8b)

The elements of the matrix 7,,(z) are all time-invariant. Note
that the matrix 7,,(z) is obtained by circularly shifting the first
line and modulating the components by the appropriate Nth root
of unity (W' in the /th line). From the expanded output y,,(z),
one obtains a corrected output by applying N filters R;(z) to the
components of y,,(z) and summing their outputs:

Y'(z) =[Ro(2)Ri(2) - Ry_1(2)] - 9(2). ()
That is, Y(z) is filtered by a LPTV filter of period N in order
to obtain Y’(z). Now, it is desired to find the R;(z) (i=0---
N —1) in such a way that the total equivalent filter from the
input X(z) to the output Y’(z) is a simple delay. The condition
when this can be done is shown in the following theorem.
Theorem: A linear periodically time-varying filter (with
period N) can be inverted if and only if the determinant of the
matrix T,,(z) has no zeros on the unit circle.
The fact that this condition is sufficient is shown by construc-
tion. Take the R,(z) from the first line of the cofactor matrix of
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T,.(2):
[Ro(2) ---Ry_y]=[1 0---0)}-cofac[T,(z)]. (10)
Then, the corrected output Y’(z) equals
Y(2) =[Ro(2) -+ Ry_1(2)] T, (2) x,,(2)
=Det[T,(2)]} X(z). (11)

Since all filters appearing in T,,(z) are time-invariant, the
determinant of T,,(z) is time-invariant. Thus Y’(z) is a time-
invariant function of X(z), showing that the time-variance has
been cancelled using the correction filters R,(z) as defined in
(10). Now, since there are no zeros on the unit circle, the
determinant of T,,(z) can be cancelled, by a causal or a non-causal
filter depending on the zero locations.

The necessity of the determinant having no zeros on the unit
circle is proven in two steps. First, it is shown that the rank of
T,.(2) has to be equal to N, otherwise the periodic time-variance
cannot be cancelled.

Corollary: 1If the rank of T, (z) is smaller than N, then it is
impossible to annihilate the time-variance of the system.

From the construction above, it is clear that the time-variance
can be corrected when the rank is equal N (see (10)—(11)).
However, if the rank is smaller than N, the determinant of 7,,(z)
is zero for all z, and we show by contradiction that the time-vari-
ance cannot be annihilated anymore. Assume that there exist
filters R,(z) such that

[Ro(z) "'RN—l] -T,(2) =["‘(Z) O"‘O]

and that the rank of T, (z) is smaller than N.

Now, the R;(z) can be expanded into a matrix R, (z) that has
the same form as 7,,(z) (see (8b)). As can be verified, the product
of R, (z) with T, (z), assuming that (12) holds, is diagonal and
has the following form:

(12)

a(z) 0 0
R T =| O ) . (13)
0 0 a(WwV 1)

The rank of a matrix product is upperbounded by the mini-
mum rank of the terms of the product [3]. The right side matrix
in (13) has rank N, which is in contradiction with our assumption
that T, (z) has rank smaller than N. It follows that when the
rank of T, (z) is smaller then N, then there is no vector
[Ro(z) -+ Ry_1(2)] such that (12) is verified, and therefore the
time-variance cannot be cancelled.

The significance of T,,(z) having a rank smaller than N is the
following: I,,(z) covers a subspace smaller than N, therefore
there exist signals x,(n) with z-transform X,(z) having the
following property:

X.(2)
T,(z)- X‘(:WZ) -7 (14)
X,(w"1z) 0

That is, certain signals simply disappear when going through
the LPTV filter. Therefore, with the above corollary, we have
shown the necessity of the rank of T, (z) being equal to N. Now,
from (11), we sce that the transmission from input to output
contains the determinant of 7,,(z) once the time-variance is
cancelled. Therefore and in order to annihilate the determinant,
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it is necessary that it does not contain zeros on the unit circle.
This concludes the necessity of the proof of the theorem.

Note that the expansion of Y(z) into N components (see (8)) is
necessary and sufficient. Expansion into fewer components will
not permit a time-variance of period N to be corrected, and
expansion into more than N components is unnecessary. The
analysis above can be done using the polyphase expansion of
signals and filters instead of the modulation expansion that we
used. This would yield the same results since the representations
are equivalent within a linear transformation.

Examples of systems with rank smaller than N, as well as of a
sub-band coding system where aliasing in the output can be
cancelled with a LPTV post-filter, can be found in [7).

IV. CONCLUSION

The invertibility of linear periodically time-varying (LPTV)
filters has been addressed. A necessary and sufficient condition
under which a LPTV filter can be inverted has been shown using
a LPTV post-filter. Such techniques find application, for exam-
ple, in aliasing cancellation in multirate systems.
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2-D Quadratic Filter Implementation by a
General-Purpose Nonlinear Module
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Abstract —In this letter it is shown that the general-purpose filtering
module proposed in [3] can be also used for the implementation of 2-D
quadratic filters.

It has been recently shown that a 2-D finite-support quadratic
digital filter can be implemented with a set of parallel branches
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Fig. 1. Implementation of a 2-D quadratic filter by matrix decomposition.
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Fig. 2. General-purpose nonlinear module.

which operate simultaneously and independently on a common
input array [1], [2]; each branch contains a 2-D FIR linear filter,
according to a suitable decomposition of the coefficient matrix.
In fact, a 2-D quadratic filter with an N, X N, support is de-
scribed by

}’("1’"2)=XTHX (1

where X is the NN, X1 vector of the input samples arranged in
a well-defined order [1], [2], and accordingly H is a symmetric
NN, X N, N, matrix formed with the filter coefficients. Since the
matrix H can be decomposed into a finite sum of rank one
symmetric matrices, we can write

H= ) qRRT (2)
j=1

where r is the rank of H(r < NN,), g;’s are real scalar values,
and R;’s are M} N, X1 vectors. Thus by substituting (2) in (1) we
obtain

) = 3 g [ 18] [#3]

r
= Z qj})jz(nan) (3)
j=1
with
NN,
yj(nlinl) =R}-X= Z 7, iXi (4)
i=1

where 7, ; and x; indicate the ith component of the vectors R;
and X, respectively. The final structure is shown in Fig. 1.

On the other hand, it has been shown in [3] that a general filter
module (Fig. 2) can be used for the implementation of various
classes of image processing operations. Aim of this letter is to
show that the quadratic filter of Fig. 1 can be implemented by
means of r modules as those introduced in [3). In fact, for the jth
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