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Split-Radix Algorithms for Length-p™ DFT’s

MARTIN VETTERLI, MEMBER, IEEE, AND PIERRE DUHAMEL, SENIOR MEMBER, IEEE

Abstract—The split-radix algorithm for the discrete Fourier trans-
form of length-2" is by now fairly popular. First, we give the reason
why the split-radix algorithm is better than any single-radix algorithm
on length-2" DFT’s. Then, the split-radix approach is generalized to
length-p” DFT’s. It is shown that whenever a radix-p* outperforms a
radix-p algorithm, then a radix-p/p? algorithm will outperform both
of them. As an example, a radix-3 /9 algorithm is developed for length-
3™ DFT’s.

I. INTRODUCTION

HE calculation of the discrete Fourier transform

(DFT) via a fast algorithm depends on the length of
the sequence on which the transform has to be evaluated.
When the length N is the product of coprime factors (N
=1IIN,;, (N, N;) = 0,i # j), one generally uses Good’s
mapping [8] to obtain a multidimensional transform that
can then be evaluated with the Winograd [20] or the prime
factor [10] algorithm (note that the Cooley-Tukey map-
ping could be used as well, but would be less efficient).
When the factors of the length are not coprime (typically
when N is a power of a small prime number p), then the
Cooley-Tukey mapping [2] must be used and leads to a
radix-r algorithm (r being equal to p or one of its powers).
Examples are radix-2 or radix-4 algorithms for the length-
2" DFT. In this type of algorithm, a large part of the com-
putational complexity arises from intermediate multipli-
cations, the so-called twiddle factors [12].

In this paper, we will be concerned with the second
case (that is, N = p™) and discuss so-called split-radix
algorithms. Note that these cannot be obtained via the
classical Cooley-Tukey mapping and that this might be
the reason why they were discovered only recently. Split-
radix algorithms for length-2" DFT’s were introduced
simultaneously by several authors in 1984 [4], [11], [18],
[16] and lead to the lowest known number of operations
(multiplications and additions) for DFT’s on these lengths
[21]. Recently, a number of papers have explored the
split-radix idea, for example, from an implementation
point of view [6], [14], for real data [6], [15], [7], or for
the computation of convolutions and Hartley transforms
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{7]. Note, however, that only problems of lengths which
are powers of two were considered up to now.

The idea behind the decimation in frequency (DIF)
split-radix algorithm for length-2" DFT’s is to start with
a radix-2 decomposition on the even indexed outputs of
the DFT while using a radix-4 decomposition on the odd
indexed part. This approach takes the best of both radix-
2 and radix-4 algorithms (in terms of minimizing the num-
ber of nontrivial twiddle factors at any one stage while
minimizing the number of such stages). In the following,
we call the “‘split-radix’’ algorithm described in the lit-
erature a ‘‘radix-2 /4°’ algorithm since it represents only
one among many possible splittings of the problem as will
be shown.

The more fundamental idea behind the split-radix al-
gorithm is that different decompositions can be used for
different parts of an algorithm, an idea that can be more
generally applied than just for length-2" DFT’s once it is
understood why it works. Actually, the principle is that
independent parts of an algorithm should be computed in-
dependently and should each use the best possible com-
putational scheme, regardless of what scheme is used for
other parts of the algorithm.

The above statement is true, in particular, for compu-
tational complexity considerations (which is our point of
view in this investigation) but might be relativized when
other considerations like regularity come into play as well.
In the following, however, we will be mainly concerned
with the number of operations only (in particular, the
number of multiplications).

The outline of the paper is as follows. Section II inves-
tigates the case of length-2" DFT’s. This case is special
because small DFT’s (like length-2 or 4) are multiplica-
tion free and because computational savings are also due
to trivial twiddle factors (2nd, 4th, and 8th root of unity).
The radix-2 /4 algorithm is first motivated as a compro-
mise between a radix-2 and a radix-4 algorithm, and then
shown to be best among the various ways to split the com-
putation of a length-2" DFT. Section III considers the case
of DFT’s of length-p™, p > 2. It is demonstrated that
whenever there exists an algorithm for the length-p” DFT
that is more efficient than the radix-p algorithm, then the
radix-p /p* algorithm will outperform both the radix-p and
the radix-p? algorithm for length-p™ DFT’s. Finally, Sec-
tion IV applies the general method presented earlier to
derive a radix-3 /9 algorithm for length-3" DFT’s. While
the savings obtained over a radix-9 algorithm (a gain of
at most 7-11 percent) or other radix-3 schemes [3], [17]
are not spectacular, it shows nevertheless that the split-
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radix idea is more generally applicable than what was
thought up to now.

In the following, all DFT’s are assumed to have com-
plex inputs. The number of operations is given in terms
of real multiplications and additions. Note that we choose
to compute the complex multiplication with the algorithm
requiring 3 real multiplications and additions [12].

II. SPLIT-RADIX ALGORITHMS FOR LENGTH-2" DFT’s

Consider the DFT of length N = 2" defined by
N-1
Xe= 20 x, - Wik Wy = e /N,
n=0

k=0---N-1. (1)

We will consider decimation in frequency (DIF) algo-
rithms only (decimation in time algorithms can be derived
similarly and lead to the same computational complexity).
The idea is to divide the set of output values {X,}, k =
0 --- N — 1, into subsets whose union forms the com-
plete set of output values. Each of the subsets is then com-
puted with an adequate algorithm. For example, the ra-
dix-2 DIF algorithm performs the following division:

{Xk}radix»z = {XZku} U {X2k1+l}
kk=0---— -1, (2)

whereas the radix-4 DIF algorithm (assuming that m is
even) uses the division

{Xk}mdix.4 = {X4k|} U {X4k|+1} ) {X4k|+2}

U {X4k|+3}7 k=0 ——1 (3)

As is well known, the evaluation of each of the subsets,
when chosen properly, is done through a DFT of the size
of the subset, plus possibly some auxiliary operations in
the form of multiplications by twiddle factors.

Now, the division of the output set into r sets of size
N/r each is only one of many possible divisions. Ob-
viously, as long as the following equality holds:

{Xkl} U {sz} Uu---u {Xkl} = {Xk}v (4)

that is, that the subdivision is complete, then we have a
valid algorithm for computing the DFT of the input se-
quence {x,},n=0"---N—1.

In the following, we will explore various subdivisions
and explain why the radix-2/4 algorithm is actually a
good choice. Then, by elimination, we show that it is ac-
tually the best choice among a whole class of DFT algo-
rithms of length-2". Finally, it is shown that better algo-
rithms can be developed, but only by using more efficient
small DFT algorithms. Since the small DFT algorithms
for length 2, 4, 8, and 16 are optimal using the radix-2 /4
approach, it turns out that the first improved algorithm is
obtained by using a better 32-point DFT [9]. This leads

to a radix-2/32 algorithm that outperforms other ap-
proaches as will be shown on an example.

In order to derive a best possible algorithm for length-
2" DFT’s, we look first at the subset { Xy, } in (2), that
is, from (1),

N-1

N/2-1

nky
2 x, © Wik =
n=0

X = 'Eo (X0 + X4un/2) * Wyjas

k=0 — 1. (5)

Thus, the set of outputs { X, } is exactly the output of a
length N/2 DFT, without any multiplicative cost. If we
are trying to develop the best possible algorithm for the
length-2" DFT (in terms of number of operations), then
we must use that algorithm for the half-size DFT as well.
Therefore, it seems clear that the division operated in (5),
and which can be stated as

{Uk{Xk}} = {Xy} VU {Uj{Xj}}’

N
k=07 —1,

> J #* 2k,

(6)
is a good strategy, so far, since no multiplicative cost has
occurred yet; and it is even the optimum strategy (com-
putationally speaking), since whenever a shorter DFT can
be found at no cost inside the initial one, then the opti-
mum algorithm can be applied to it as well. Actually, this
division is exactly what is done in optimal algorithms for
length-2" DFT’s [5], [9].

But now, there is no a priori reason to consider all odd
indexed terms at once, as it is done in a radix-2 approach.
One possibility is to use a radix-2' decomposition for the
odd indexed terms, that is,

20-1—1
{X2k1+l} ={ ‘Uo {lek1+2j+l}}s
j=

2m

kl=011’. .’7

-1 (7
If the subsets are chosen properly, such a decomposition
will require

* N/2' DFT’s of size 2' where only the odd indexed
outputs are needed (*‘input’’ stage)

* approximately N/2 — 2’ twiddle factors (some of
them being trivial)

* 2'" DFT’s of size N/2' (‘output”* stage).
These numbers can be easily checked out on an example.
Let us consider the computation of the odd indexed out-
puts in the case of a radix-4 decomposition (as it is done
in the radix-2 /4 algorithm):

{sz.+1} = {X4k|+l} U {X4k|+3}’
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Then

N-1

Z X, W[(\;tk1+2j+l)n
n=0

N/4-1 3
. 4k +2j+ 1) (m +mN/4
E Zoxn|+nzN/4 WN v 1EmN/4)

n=0 m=

X4k1+2j+1 =

N/4-1
k .
= 2 WN‘/"; . WnN1(2/+1)

- WD),

k=0 =~ 1,

i =0, 1.
4 J )

(9)
The last sum corresponds to a length-4 DFT where only
the odd indexed terms (1 and 3) are evaluated. There are
N/4 such reduced DFT’s. The next term corresponds to
twiddle factors, and the left sum is a length-N /4 DFT
(there are two of them).

Now, the crucial compromise for a good choice of / in
a radix-2 /2" algorithm is as follows. As the radix (r = 2)
increases, the size of the final DFT’s decreases, thus re-
ducing the complexity of the output stage. However, the
number of operations for the input DFT’s is raised, thus
increasing the complexity of the input stage. Note that the
number of twiddle factors remains approximately con-
stant. Therefore, an optimal tradeoff has to be found, and
this can be done by trial and error.

In a first step, let us limit our search to the case where
the length-2 odd DFT is computed through any radix-2*
DFT, including radix-2/4. The number of multiplica-
tions required for computing a DFT of any length can be
obtained easily by iterating the above arithmetic complex-
ities. In that case, it turns out by inspection that the radix-
2/4 algorithm is the best among the radix-2/2' algo-
rithms. The most likely reason for that fact is that the
length-4 DFT is the largest multiplication free DFT, and
thus, the input stage requires no multiplications at all. Fig.
1 shows schematically a comparison between the radix-2,
radix-4, and radix-2 /4 algorithms for a length-16 DFT.
This shows how the radix-2 /4 is actually a compromise
between the two other algorithms.

In a second step, let us consider a radix-2 /32 algo-
rithm, and compare the use of the classical algorithm for
the length-32 DFT with the use of an optimum algorithm
for the length-32 DFT as basic building blocks for larger
DFT’s. As an example, we derive a radix-2 /32 algorithm
for the length-1024 DFT. Obviously, the even indexed
outputs are obtained with 512 input additions (corre-
sponding to x, + X, 4 /») and a length-512 DFT. The odd
indexed outputs are now derived using a radix-32 ap-
proach. This implies 32 DFT’s of length-32, but where
only odd indexed outputs are required. Such a length-32
DFT with odd outputs only takes 48 multiplies ([12] gives
this result using a Rader-Brenner algorithm [13], but the
same number can be obtained with a split-radix algorithm
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Fig. 1. Schematic comparison of various FFT algorithms for the length-
16 DFT. (a) Radix-2 algorithm. (b) Radix-4 algorithm. (c) Radix-2/4
algorithm.

[6] with fewer additions). Then, there are 16 times 31
twiddle factors. Finally, there are 16 output DFT’s of
length-32. Using the lowest known operation counts (for
practical algorithms) for length-32 and 512 DFT’s as
given, for example, in [18], we arrive at a total of 7188
multiplications. This is actually an increase by 16 over
the 7172 multiplications that are used by the radix-2 /4
algorithm.

The only way to improve this algorithm, at least as far
as multiplications are concerned, is to use a better length-
32 DFT algorithm like the one proposed by Heideman and
Burrus [9] which uses 64 instead of 68 multiplications (at
the cost of 116 additions). In that case, the length-1024
DFT requires 6988 multiplications (using a radix-2 /32
approach in all parts of the algorithm). This is better than
a radix-2 /4 algorithm (using also the improved 32-point
DFT) which takes 7088 multiplications. Of course, these
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algorithms are too costly in terms of additions in order to
be practical, but this is not our point here. Note that the
optimal minimum multiplication algorithm would only re-
quire 3872 multiplications [9], but at the cost of an un-
known yet very large number of additions. The results of
this section can be summarized in the following two re-
marks [19].

Remark 1: The algorithm requiring the lowest number
of multlphcatlons for computing the length-2" DFT will
be a radix-2 /2* algorithm, k remaining to be found.

For example, the optimal algorithm [5], [9] (in terms
of multiplications) for the length-2" DFT is a radix-
2/2"~" algorithm. The computation of the odd part of
size 2" ! leads, however, to an unpractical number of
additions, and thus, smaller radixes are chosen.

Remark 2: As soon as there is a length-2' algorithm that
has a smaller number of multiplications than the radix-
2 /4 algorithm for the length-2' DFT, then the radix-2 /2!
will have less multiplications than the radix-2 /4 algo-
rithm.

It seems, therefore, that the radix-2 /4 algorithm is the
best, as far as the total number of operations is concerned,
among a rather general class of practical algorithms that
map length-2" DFT’s into smaller DFT’s and twiddle fac-
tors, due to its low number of additions and its regular
structure. Additional improvements seem only possible by
using more efficient small DFT’s (like the one in our ra-
dix-2 /32 example). Nevertheless, as a side result, it was
shown that many efficient mappings are possible besides
the classical Cooley-Tukey mapping. Now, we will use
our understanding of the radix-2 /4 algorithm in order to
develop split-radix algorithms for length-p” DFT’s, p >
2.

HI. SpLiT-RADIX ALGORITHMS FOR LENGTH-p™ DFT’s,
p > 2

The situation in the case p > 2 is somewhat simpler
because there are no trivial twiddle factors (except the
zeroth power of the roots of unity, of course). We will
concentrate our attention on radix-p /p? algorithms since,
on the one hand, we know from the case p = 2 that they
are interesting, and, on the other hand, there are not many
improved practical algorithms available for p°, p > 2.
Thus, we consider the following division of the outputs
of a length-p™ DFT:

{U"{Xk}} = {kal} U {Uj{szkHj}}

N
k=02 -1,

P

N
k=051,
j=0"‘1)2_1

and (j)Modp # 0. (10)

That is, the output terms with indexes multiple of p are

considered in a radix-p fashion, while the others are con-
sidered in a radix-p? fashion.

In the following, we are going to show precisely that
whenever the radix-p* algorithm is more efficient than the
radix-p algorlthm (that means there is a better algorithm
for the length -p? DFT than the radix-p solution), then the
radix-p /p* algorithm is better than both of them.

Consider first the multiplicative complexity of a radix-
p algorithm for computing length-p™ DFT’s. The first
stage uses p™ ' DFT’s of length-p. The output stage uses
p DFT’s of length-p”‘ !, In between are p™ twiddle fac-
tors, but p" "' + p — 1 of them are trivial. Denoting by
N, and N, the number of multiplications of a length-p DFT
and of a twiddle factor, respectively, and by O,(m) the
number of multiplications of the length-p™ DFT (the sub-
script p denoting the radix-p), we get the following re-
cursion:

O,(m)=p-0,(m—1)+p - N,

+ (PN (p=1)=p+1)-N. (11)
The initial conditions of this recursion are
0,(0) =0
0,(1) = N,
0,(2) = 2pN, + N,(p — 1)". (12)
A general solution of (11) is of the form
O,(m)=a,-m-p"+a, p" +a. (13)

Solving (13) to meet the initial conditions given by (12)
leads to

Np + N,(P - 1)

a =
p
a, = _N,
as = N,. (14)

Obviously, we will be most interested in the leading term
a; in (14). Note that the above result holds for p =2if
one disregards the simplifications due to 2nd, 4th, and 8th
roots of unity.

Assume now that m is even, and that we compute the
DFT in a radlx-p fashion. The number of multiplications
for the length-p® DFT, denoted by N,,, is equal to

N,, = 2pN, +N(p—1)—oz (15)

that is, it is equivalent to the radix-p version of the length-
p*> DFT, minus a gain «. We can now use N,, and plin
place of N, and p in (14) in order to get a comp]ex1ty of
the radlx-p algorithm. The new leading term, aj, equals
2pN, + N(p — 1) + NI(P -1)-«a
al = 5 . (16)
p

The complexity of the radix-p* algorithm, denoted by
O0,2(m), has to be compared to the complexity of the ra-
dix-p algorithm at 2m, that is, 0,(2m). The leading terms
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are

0,(2m) = a; * 2m cp™=2a,-m- (p*)"

0p(m) =aj - m - (p*)" (17)
from where it is clear that, for m large enough,
O0p(m) < 0,(2m) & aj < 2a,. (18)
Now, the ratio a}/a, can be rewritten as
aj a
L . (19)
a p(N(p — 1) + N,)

Clearly, the radix-p® algorithm outperforms the radix-p
algorithm as soon as « is greater than zero [see (15)],
which is an expected result, of course.

We now turn our attention to the radix-p /p? algorithm
for length-p™ DFT’s. The splitting is done according to
(10) and leads to the following expression:

(N/p)y-1 W P
1ki
kal = mz=:0 %/p : n22=0 xn|+nz-N/p:
ky=0---(N/p)—1 (20)
(N/p)—-1 .
1k3 n
Xp2k3+k2 = .,12‘:0 N/p? Wlez
Pt .
nzz=0 W;§ T Xny +n2N/p?
kh=0---p* -1
and (k) Modp # 0,
ks =0+ (N/p*) - 1. (21)

The above equations can be verified by deriving a radix-
p algorithm for X, in (20) and a radix-p® algorithm for
Xp2k3+k2 in (21).

Considering the computational complexity of the above
equations, we note that (20) corresponds to a DFT of
length-p™ . The right sum in (21) corresponds to N /p?
DFT’s of size-p?, but where outputs with indexes multiple
of p are not required. By extension, we call this an ‘odd-
DFT’’ of size-p*. The left sum in (21) amounts to p*> — p
DFT’s of size-p™ ~* (the minus p comes from the excluded
values of k,). Finally, there are p? — p groups of twiddle
factors, each with N/p? — 1 nontrivial ones.

Note that the ‘‘0dd-DFT’’ of size-p” requires the mul-
tiplicative complexity of a size-p? DFT minus the one of
a size-p DFT, since the outputs with indexes multiple of
p are not required. The complexities can be subtracted
because the two computations are independent. Also, the
gain « of the size-p2 DFT ([see (15)] carries over com-
pletely to the ‘‘odd-DFT”’ of size-p* as well.

The above numbers lead to the following recursion for
the multiplicative complexity O,/,.(m) of the radix-p / P’

algorithm:
Op/pz(m) = Op/pz(m - 1) + p(p — 1) . Op/pz(m - 2)
+ pmvz(Npp - N, + p(p - l)Nt)

—p(p — N, (22)
The general solution of (22) is of the form (see the Ap-
pendix)
*m-p" +a;
(1=p)" +aj. (23)
The terms in p™ and (1 — p)™ correspond to the homo-
geneous solution of the second-order recursive difference
equation (p and 1 — p being the eigenvalues of the tran-

sition matrix) while ai -+ m - p™ and a{ are related to the
inhomogeneous part. The initial conditions are

0,/2(0) = 0

0p/p2(1) = N,

0,/,2(2) = N, (24)
and O, /,2(3) is obtained from (22) using (24). This leads
to four equations for the unknowns ay, a5, aj, and a; .
The solution can be found in the Appendix, from where
we take the leading term which equals
N, p>P=N,-p+N, —N,

p(2p - 1)
Similarly to (17) and (18), we can state that, for large
enough m,

Op/pz(m) =af

< p" + af -

aj = (25)

0,/,2(2m) < Op(m) & 2a} < aj. (26)

Using N, from (15), aj from (16), and a{ from (25), one
can verify that

2 _ f(p, N, N,, @)
ai  f(p, Ny, N,, a) + «

where f(p, N,, N,, ) is given in the Appendix. There-
fore, whenever o is greater than zero, then the ratio in
(27) is smaller than one, which means that the radix-p / p2
approach performs better than the radix-p® algorithm.

We recall that « is the gain or improvement of a length-
p* DFT algorithm over an equivalent radix-p version.
Therefore, with (19) and (27), we have proven that for
large m and o > 0, the following relation holds:

0,/2(2m) < Op(m) < 0,(2m) (28)

which is the central result of this section. An interpreta-
tion of this result seem appropriate at this point. The ra-
dix-p /p’ algorithm takes the best of both the radix-p and
the radix-p” algorithm. First, from the radix-p algorithm,
it takes the multiplication free mapping into a size-N/p
problem for the outputs with indexes multiple of p. Then,
from the radix-p® algorithm, it takes the more efficient
computation of the ‘‘odd”’ part of the size-p> DFT. Fur-
ther improvements seem only possible by using more ef-

(27)
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ficient DFT’s of size-p’, I > 2. Obviously, these results
are parallel to the ones derived in the previous section for
length-2" DFT’s.

IV. AN EXAMPLE

In this section, we derive a radix-3 /9 algorithm that is
more efficient than the straight radix-3 or radix-9 algo-
rithms for length-3" DFT’s.

A length-3 DFT takes 4 real multiplies while an im-
proved length-9 DFT uses 20 real multiplies [1, Appendix
B]. Since a radix-3 version of the length-9 DFT would
use 6 DFT’s of length-3 and 4 twiddle factors (3 multi-
plications each), that is, a total of 36 multiplications, there
is an improvement « equal to 16. Now, the ‘‘odd-DFT”’
of length-9, that is, a DFT of length-9 where x;, x5, and
Xg are not used, requires 16 multiplies as can be seen by
stripping the length-9 DFT algorithm in [1, Appendix B].
Using these various complexities, we obtain [from (14)
and (a5)]

1

03(m)=?0-m-3'"—3'3'"+3 (29a)
44

09(m)=3-m'9'"—3-9”'+3 (29b)
34 w9 16,

(29¢)

Table I lists the number of multiplications for length-
3™ DFT’s. For the radix-9 approach when m is odd, a
mixed-radix technique (1 step in radix-3, the rest in radix-
9) was used. The asymptotic gain (27) of the radix-3 /9
over the radix-9 algorithm is

2af _ 68/15
a,  44/9

Both the radix-3 and the radix-9 algorithms can be im-
proved by using so-called small DFT’s with scaled output
[12]. In that case, the outputs of the small DFT’s have an
attached scale factor that can be included into the multi-
plications by the ‘‘twiddle factors,’’ or otherwise, the re-
sulting total DFT will have a scale factor as well, ob-
tained by multiplying the scale factors of the cascaded
stages.

The length-3 DFT with scaled output takes 2 multipli-
cations only, leading to 24 multiplications for a radix-3
version of the length-9 DFT. The improved length-9 DFT
with scaled output uses 16 multiplies, and thus the gain o
is equal to 8. Finally, the ‘‘odd-DFT’’ of length-9 uses
14 multiplies. Using these numbers leads to the following
multiplicative complexities [from (14) and (a5)}:

= 0.92727 - - - . (30)

8

03(m)=§'m-3"‘—3-3'"+3 (31a)
40 m

Op(m) =" ~m -9 =3-9"+3 (31b)

TABLE 1
NUMBER OF MULTIPLICATIONS FOR THE LENGTH-3" DFT
m 3m O3(m) Og(m) 03,9 (m)
1 3 4 4 4
2 9 36 20 20
3 27 192 144 128
4 81 840 552 536
5 243 3324 2460 2204
6 729 12396 8508 8156
7 12187 44472 32808 29624
32 67 8 m
Osp9(m) = — -m-3"——-3" - — . (=2)" + 3.
wo(m) = T2 >s 7 (=2)

(31c)

Table II lists the multiplicative complexity for the
length-3" DFT’s with scaled output. The asymptotic gain
of the radix-3 /9 over the radix-9 algorithm is

2af 64/15

aj 40/9 0.9
which is smaller than in (30). This was to be expected
since the gain o was smaller than in the nonscaled ver-
sion. The last column in Table II lists the theoretical min-
imum number of multiplications achieved by an optimal
algorithm following [9]. Obviously, both the radix-3/9
and the radix-9 algorithms are suboptimal, even for such
a small length as 3’ = 27. Note that the radix-2 /4 algo-
rithm is optimal up to 2* = 16.

Table III gives the number of additions for the various
algorithms for length-3" DFT’s. Note that the improve-
ments are of the same order as for multiplications, and
that the radix-3 /9 algorithm seems to achieve the mini-
mum number of operations (additions plus multiplica-
tions) for length-3" DFT’s, just as does the radix-2 /4 for
length-2" DFT’s.

As far as length-3" DFT’s are concerned, and since they
intend to be practical algorithms, a number of remarks are
of interest. Several algorithms achieving low arithmetic
complexity have been proposed. A first one, by Dubois
and Venetsanopoulos [3], makes use of the (1, ) plane
[«* = 1] in order to reduce the number of multiplications
inside the algorithm, at the cost of one real multiplication
per point at each ‘translation’’ between the (1, j) and the
(1, u) plane. This is the same algorithm that was used
later on by Martens [11], together with the 3 multiplica-
tion/addition complex multiplication scheme. Another
approach was proposed by Suzuki et al. [17], who have
shown that when a 4 multiplication complex product was
used, the complex product inside the length-3 DFT could
be merged with the computation of the twiddle factors and
was thus free, and this without using the (1, u) plane.

(32)
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TABLE II
NUMBER OF MULTIPLICATIONS FOR THE LENGTH-3" DFT WITH SCALED
OuTtpUT
m | 3™ | Oxm | Ogm) | Oyowm | “hge
1 3 2 2 2 2
2 9 24 16 16 16
3 27 138 114 106 74
4 81 624 480 472 272
5 243 2514 2082 1954 898
6 729 9480 7536 7360 2816
7 2187 34266 28434 26842 8618
TABLE II1
NUMBER OF ADDITIONS FOR THE LENGTH-3" DFT WITH SCALED OUTPUT
m 3m O3(m) Og(m) 03/9 (m)

1 3 16 16 16

2 9 108 90 90

3 27 516 462 408

4 81 2136 1812 1650

5 243 8184 7212 6240

6 729 29892 25518 22602

7 12187 105708 95586 79464

When compared to the algorithms making use of the (1,
u) plane [3], [11], the radix-3/9 algorithm has both a
lower number of multiplications and additions (if the con-
version to the ordinary (1, j) is counted), while it achieves
less multiplications than the scheme in [17].

The improvements are not substantial, but they open
new possibilities for efficient algorithms of length-2* - 3/,
Note that the density of DFT lengths covered by length
2¢ - 3! FFT’s is much higher than that of single radix
algorithms, thus making such FFT’s quite useful.

Finally, the question remains open if there is a radix-
3/9 algorithm in the (1, u) plane that would improve
current algorithms. At this point, there is no known radix-
9 algorithm that has a gain factor o greater than zero, and
thus, there would be no advantage in going to a radix-3 /9
scheme in the (1, p) plane.

V. CONCLUSION
First, the split-radix algorithm (or radix-2 /4 as it is
called here for clarity) for length-2" DFT’s has been re-
viewed. It was shown that the radix-2 /4 is the best al-
gorithm among a general class of possible split-radix al-
gorithms, and that improvements can only be achieved by
going to more efficient small DFT algorithms (like an im-

proved length-32 DFT which leads to a more efficient ra-
dix-2 /32 algorithm).

Then, the split-radix idea was generalized to length-p™
DFT’s, p > 2. It was proven that whenever there exists
an improved length-p?> DFT algorithm, then the radix-
p/p* will outperform both the radix-p and the radix-p?
algorithm.

As an example, a radix-3 /9 algorithm was developed
which achieves better performance than the radix-3 or the
radix-9 algorithm. While not achieving the minimum
number of multiplications, this algorithm leads to a good
compromise in terms of the total number of operations.

In short, it was shown that the split-radix idea gives a
rather general method to devise efficient algorithms for
length-p™ DFT’s.

APPENDIX -
SOLUTION OF THE RECURSIVE DIFFERENCE EQUATION
DEFINING THE MULTIPLICATIVE COMPLEXITY OF
THE RADIX-p/p? ALGORITHM

The recursive difference equation is given in (22) and
the initial conditions are given by (24), and

0,/2(3) = N, + p(p — 1)N,
+ p(Npp - N, + p(p — 1)N)
—p(p — )N, (al)

which is found with (22) and (24). The homogeneous part
of (22) corresponds to the following transition matrix:

O(m) 1 p(p - 1) Oo(m—-1)
<0(m - 1>> ) <1 0 ) ' <0(m - 2))'
(a2)
This transition matrix has the eigenvalues A\; = p and \,
= 1 — p. The inhomogeneous part of (22) will give rise

to a leading term in m - p™ and to a constant. This leads
to a general solution of the form

‘m-p" +a)
“(1=p)" +aj. (a3)

In order to meet the initial conditions of (24) and (al),
the factors g/’ of (a3) have to solve the following set of
equations:

Oy /p2(m) = af

-p™ + af

0 1 1 1 al

p p (1-p 1} (&

2 PP (1-p) 1 ay

' P (1-p) 1 aj
0
NP

= . a4
N (ad)

Op/p2 (3)
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The solution of (a4) leads to

" IVIP2 - NP + Npp - Np
ay, =
p(2p — 1)
3N’ — 2Np — 2N,p + N,
a; = — 5
(2p = 1)
. N,p* —2N,p + 2N,p + N, = N,,
ay = — 5
(2p = 1)
ai = N,. (as)

Now, we use the number of multiplications for the length-
p* DFT, N,p, as in (15), and we calculate the ratio of the
leading terms of the radix—p/p2 (a5) and the radix-p® al-
gorithm [from (16)]. This ratio can be rewritten as

f(ps Ntv Npa O()

[al]l'd(.li>(>—p/p2 _ .
f(p, N, N,, a) + «

(a6)

B | —

[allmdix—pl
with
f(p. N, N,, @)
= 4Np® + (4N, — 6N,)p’ + 2p(N, = N, — a).
(a7)

Thus, as soon as « is greater than zero, then (a6) is smaller
than 1/2.
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