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ABSTRACT

We derive a formula for the product of two Toeplitz matrices that is similar to the
Trench formula for the inverse of a Toeplitz matrix. We then derive upper and lower
bounds for number of multiplications required to compute the inverse or the product of
Toeplitz matrices and consider several special cases, e.g., symmetry, as well. The lower
bounds for the general cases are in agreement with earlier results, but the specialized
lower bounds and all the upper bounds are new. Both upper and lower bounds are
O(n?) and differ only in lower order terms.
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1. INTRODUCTION

An (n + 1) X (n + 1) Toeplitz matrix is a matrix of the form

ao a; Tt 8,y G,
2., Gy Tt Gpg G4y
A=l ), ()
4 _, Q_, °°° 0 q
Gy G " 0 a5

i.e., Ay ;41 = Ay ;- Toeplitz matrices play an important role in many prob-
lems in system theory and signal processing [3, 4]. A similar and important
class of matrices are Hankel matrices. A matrix H is a Hankel matrix if
Hi_ 4y =H;; In this paper, we will deal only with Toeplitz matrices.
Because Hankel matrices are related to Toeplitz matrices through a simple
permutation, it is a trivial matter to apply the results of this paper to Hankel
matrices.

The solution of linear systems of equations involving a Toeplitz matrix is a
very common problem in practice. Fast, O(n?) [3, 9, 14}, and even superfast,
O(nlog® n) [1, 2}, algorithms exist for this problem. To compute the complete
inverse of a Toeplitz matrix, one can use the Trench formula [14, 3}, which
relates the border of the inverse of a Toeplitz matrix to its interior through the
sum of iwo cuter prodnets. The resulting algorithm uses O(n?) operations, as
compared with O(n®) for the more general Gaussian elimination.

The product of Toeplitz matrices has to be formed for certain problems in
spectral estimation [18] and the solution of banded Toeplitz systems [10]. We
derive an equivalent of the Trench formula for the product of two Toeplitz
matrices. With this new formula we are able to show that the computation of
the product of two Toeplitz matrices also requires at most O(n?) operations.

The question arises whether these O(n®) methods for solving inverse and
product problems are close to what an optimal algorithm could achieve. We
present a simple analysis based on the relationship that exists between outer
products and Toeplitz products or inverses to show that the lower bound is
indeed O(n?). It turns out that the lower bounds for general Toeplitz matrices
have been derived with a differen’ method by Makarov [11]. Our proof is not
only simpler, but its structure allows us to extend it easily to special cases,
such as when the matrices are symmetric or for the squaring problem, where
we show new lower bounds.

Relating Toeplitz products or inverses (o sums of outer products reduces
much of the problem of finding good algorithms for these problems to the
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simpler problem of finding good algorithms for computing sums of outer
products. We use this approach to derive efficient algorithms for Toepiitz
inversion and multiplication. These algorithms give us O{n?) upper bounds for
the number of multiplications which differ from the lower bounds only in
lower order terms.

In the next section, we introduce some notation and indicate the lower
bounding techniques that will be used. Section 3 relates the inverse and
product of Toeplitz matrices o some structured outer product problems.
Section 4 investigates the complexity of these outer products. Sections 2-4 are
used in Sections 5 and 6 to come up with complexity bounds as well as
practical algorithms for the product and inverse problems.

2. BOUNDING TECHNIQUES

In this paper, we are concerned with finding upper and lower bounds for
the number of multiplications required to perform various computations on
Toeplitz matrices. The emphasis is on multiplications because a theoretical
framework exists which allows us to easily find lower bounds for the number
of multiplications required for a broad range of computations.

Finding an upper bound for the number of muitiplications required to
perform a given computation is straightforward: we describe an algorithm and
count the number of multiplications used. In all of the algorithms described in
this paper, the number of additions used will be of the same order as the
number of multiplications used, or else we will be able to obtain such an
algorithm by only slightly increasing the number of multiplications.

To find lower bounds, we rely on results described in [14]. We begin by
defining notation. Computations are performed over the ficld H. The set of
inputs to an algorithm is denoted by B C H. The elements of B are referred to
as indeterminates. We also assume that we have at our disposal a ground field
G C H. Typically, G is the smallest subfield of H, e.g., H=R and G = 2.

An algorithm is a sequence of elements from H, each element being either
from B or the sum, difference, product, or quotient of two previous elements.
An m /d step (informally referred to as simply a multiplication) is a step where
the element from H does not come from B, and cannot be expressed as the
linear combination over G of previous elements.

With this model, an algorithm can be thought of as a collection of field
identities involving rational functions. Let p{f}.'**, f,} be the minimum
number of multiplications that any algorithm uses to compute f,**, f,, from
B. To disallow data dependencies in u{f;,**. f,}, the model does not allow
branching, but it does allow division by a rational function that may take on
zero values, so long as the function is not the zerc function.
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Let Lo{X; 1} denote the linear span over G of X in I, and let the
quotient space of I over J be denoted by I/]. We then have the following
theorem, which we state without proof.

Tueorem 2.1 (4], p{fy, . fu} = dim(Le{fy, -, fus H/LGi B}})-

Theorem 2.1 will be used in Sections 4-6. As we will always be computing
matrix functions of matrices, we introduce the following simplified notation.
Let A be a matrix, and let F(A) be a matrix function of A. Lc{A} refers to the
span of the set of elements of A. Likewise, u{F(A)} is the number of scalar
multiplications required to compute the elements of F from the elements of A.
Finally, L;{F(A)} means L {F(A); H/L-{A}}.

3. RELATIONSHIP OF TOEPLITZ PRODUCTS AND INVERSES TO
OUTER PRODUCTS

In this section, we demonstrate the relation of the computation of inverses
and products of Toeplitz matrices to the computation of sums of certain
structured outer products.

We begin with multiplication. Let A and B be (n + 1) X (n + 1) Toeplitz
matrices. define the first row and column of A as (g, a'.) and (¢, a' )", with

and
als (0., e.p 0 a,).

Also define the reverse vectors 3, and &_ as

and
5t._5 (a-n a_pns e a-—l)~

Use similar notation for the first column and row of B.
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Because A and B are Toeplitz matrices, they can be partitioned as

(d 5.\

+
a  q ’

t

A= (aﬂ a+
\a_ 4

B = (bo b‘,,) _ l’ 2 B+)
- .
bh. 2 ’ \b_ by
Multiply the first partitions to obtain

and

agby + atb_  ab' + a' 2
a_by+«b_ a_ b+ 42

AB =

Therefore,

(AB)i-i-l,j-l-l = (a_b‘.,_+ ﬂg) i,j=0,...,ﬂ.—' 1. (2)

i j?
Multiplying out the second partitions for A and B will similarly vield

(AB), ; = (.«m+ abl),, @j=0,....n-1 (3)

Combining Equations (2) and (3), we obt -
(AB) i1 ja1 = (AB)y; + (a_bt—&,BL), .  ij=0....,n-1. (4)

Equation (4) shows how to compute AB from its border via the computation of
the sum of outer products a_b*, — a.b'. This equation can be generalized to
the product of rectangular Toephtz matrices. A consequence of Equation (4) is
that AB is a Toeplitz matrix if and only if a_b, — &,b* = 0. This fact has been
observed in [13].

We now move on to inversion. The Trench algorithm [14, 3] is a two-stage
algorithm for computing the inverse of a Toeplitz matrix. In the first stage, the
border of the inverse is computed. The interior of the inverse is computed
from its border in the second stage. Each stage requires O(n?) multiplications.

Several other algorithms exist for computing the border of the inverse.
Among the more recently introduced are a class of “doubling” algorithms.
Practical versions of these algorithms require O(n log? n) multiplications and a
similar number of additions [1, 2, 17]. It is also possible to implement the
algorithums using only O(n log n) multiplications but many more additions [17].
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We are therefore concerned only with the second stage of the algorithm.
Specifically, let A be given as in Equation (1), and let B be its inverse. The
Trench algorithm allows for the computation of B via the relationship

1 . =
Bi+l,j-l-l = Bi,j + —(b_bf,_" b+bt__)

i i,j=0,...,n—-1. (5)

i, j?

Gohberg and Semencul [6, 7] obtained an expression for B as the sum of
products of triangular Toeplitz matrices:

b, O 0\/b0 b, -+ b
b, b, cee 0 0 & - b

(8)

which is algebraically equivalent to the Trench formula.

Equation (5) or (6) imposes a rigid structure on the form of the inverse of a
Toeplitz matrix. In Section 6, we will find a lower bound for the number of
multiplications required to invert a Toeplitz matrix. In so doing, the question
arises whether the inverse of such a structured matrix is necessarily Toeplitz.
This questicn is answered by the following proposition.

PROPOSITION 3.1.  Let B be an (n + 1) X (n + 1) matrix of the form given
by Equation (5) or (6). Assume further that by # 0 and that A = B~ exists,
Then A is a Toeplitz matrix.

The proof of Proposition 3.1 is given in Appendix A.

Our proof uses the Trench formula and is quite simple. A related result,
from which Proposition 3.1 can be easily derived, was shown in {7, Theorem
18.5], but, because it uses the Gohberg-Semencul formula, it is more involved
then our derivation.

Note the similarity between Equations (4) aud (5); in hath, we obtain the
desired matrix. from its border and the sum of two outer products. We denote
the border of a matrix A by dA. From Equations (4) and (5), we see that we
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TABLE 1
TOEPLITZ MATRIX PROBLEMS AND RELATED OUTER PRODUCTS?

(rn+1)%X(n+1) n X n outer
Toeplitz matrices product

AB ab' + cd'

AB, symmetric abt — aht

A2 ab' — ba'

A2, symmetric aa' — aa'

A~! ab! — bat

A~ symmetric ag — aat

®A and B are arbitrary (symmetric) Toeplitz matrices, and a,
b, ¢, and d are arbitrary vectors.

may view 9A as the first (or last) row and column of A. Alternatively, A can
be taken as the first and last row (or column) of A. Any of these four
alternatives allows one to obtain either AB or A~! from its border and two
outer products.

If we impose additional structure on the matrices involved, we will obtain
additional structure in the outer products. If the Toeplitz matrix that we wish
to invert is symmetric,! then its inverse will be symmetric, so we will have
b, = b_ in Equation (5). Similar structure is added to matrix multiplication if
the matrices are both symmetric and Toeplitz. If we wish to compute the
square of a Toeplitz matrix, we will have a,= b, and a_= B_ in Equation
(4). The exact structure of the sums of outer products for each problem is
shown in Tabie 1.

4. COMPLEXITY OF THE OUTER PRODUCTS

In the previous section, we demonstrated the connection between Toeplitz
matrix problems and four structured n X n outer products: ab* + ed', ab* -
bat. ab' — b, and aa' — 33". The advantage of doing this is that the complex-
ity analysis of the outer product problems is relatively simple.

In this section, we carry out the analysis of the multiplicative complexity of
the outer products. It will be shown that all of the problems possess O( n?)
multiplicative complexity, and that the more structured outer products require

“The structure added by symmetry in a Toeplitz matrix is equivalent to the structure
added by persymmetry in a Hankel matrix.
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fewer multiplications than the less structured ones. To simplify the discussion,
we will henceforth assume that n is even. The analysis for n odd is very
similar. When results differ, the results for n odd will be put in parentheses.

The elements of sums of outer products are quadratic forms; that is, their
elements can be written as Zc; ;q;9;, where «;;€G, and the g;s are
elements of the vectors a, b, ¢, and d. To obtain lower bounds on the number
of multiplications required to compute these sums of outer products, we will
use the results of Section 2. If the ¢,’s are indeterminates, then different
quadratic terms are linearly independent of each other and the g¢,’s. We now
find bounds for each of the four cases:

1. ab'+ed' = {g;,,b;y; + ¢;41d;11}. The (ij)th element is the only
element with the term a@;,,b;,,, 5o all elements are independent. To calculate
ab' + ¢d", we use the matrix multiplication algerithm from [16]. Compute a,c;
and b;d,for i =1,...,n (2n p’s). We can now obtain output elements at one
multiplication each through

a;b, + c,d; = (a,- + dj)(ci + bj) - a,c; - bd;. (7)

it follows that n® < p{ab' + cd'} < n2 + 2n.

2. ab*-bat = {a;s1bj41 — b,_a,_;}. The elements for which i+ j
< n — 1 are independent, as only the (ij)th element has the term aq,, 1bj41-
To compute this matrix, proceed as above with appropriate substitutions. Thus
“c;d;” is obtained free from “a;b,”. We use Equation (7) only when i +j < n
-1, as (ab' — b&'), ;= —(ab* - Bﬁ'),,_l_j,,,_,_,-. Therefore, (n% - n)/2 <
u{abt — Ba'} < (n? + n)/2.

3. ab' - ab'. Pairs of elements of this matrix can be computed as two
point circular convolutions. Specifically,

(abt - 5i)t)i‘j - a;1 -a,_; bj+l
(abt - 55').-,,.4—; 8y G4y b,._j )

Therefore, computing ab — 3b' is equivalent to computing the following
circular convolutions:

(811 =) (Babasy).  i=0im= 1 =0, 21 (8)

If, in (8), we replace i by n — 1 ~ i, we will only switch the order and the
signs of the outputs of the circular convolution. Hence the only convolutions
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that have to be computed in (8) are those for which i, j < n/2 — 1. This
leaves n?/4 two point circular convolutions. A two point circular convolution
can be computed with two multiplications [3]. We can therefore compute
abt — 3b* in n2/2 multiplications. It is easy to see that the outputs of the
circular convolutions described by (8) for which i, j < n/2 — 1 are indepen-
dent. Therefore, u{ab* — 8b'} = n2/2 [(n® — 1)/2 for n odd].

4. aa'— 3a'. View this matrix as a special case of the previous matrix,
with a = b. The outputs of (8) will then not change if we switch i and j, so we
oniy need to compute those convolutions for which j < i < n/2. Also, when
i = j we only need one multiplication, as

(%41 —8uo1)*(%i41 GBn-i) = ((aH_l ~ 8,_;)(8i41 + 4-)) 0).

The elements of aa — aa* for which i > jand i > »n — j — 1 are independent,
so u{aa' — @@} = n?/4 [(n® - 1)/4 for n odd].

As a final note, let us say that for the inversion problem the outer product
of interest is (1/ by)(b, b b_b., ). The division by b, requires no more than n
additional multiplications, as we can first divide the elements of b, by b, and
then proceed as above. Because b, is not among the elements of b, or b_, the
dimension of the span of the outer product is not affected by the division by

bo.

5. TOEPLITZ MATRIX MULTIPLICATION

Equation (4) relates the computation of AB to the computation of 3(AB)
and a_bY,— &,b'.. The relatively simple structure of 3(AB) and a_b*, - d,b
will be exploited in this section to obtain lower and upper bounds on u{AB}.
From Equation (4) we can readily see that

w{AB} > dim(Lg{{a_b'-a,bt } U o(aB)}) (9)
and
u{AB} < p{a_bﬂ,— §+Bt_} + u{B(AB)} (10)

We will consider lower bounds first. For definiteness, we will take d(AB)
as the first and last row of AB; that is, as (g a%)B and (81 ao)B. We now
evaluate the right hand side of Equation (9).
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The term ayb; has unit weight in the ith element of (¢, a%,)B, while it has
zero weight in the other elements of (g, a',)B, in all the elements of a_b', —
a,b%, and in the first n elements of (‘. a,)B. Likewise, the term ayb;_,, has
unit weight in the ith element of (3'. a,)B, while it has, for i < n, zero weight
in the other elements of (8. a,)B, in all the elements of a_b', — a,b" , and in
all the elements of (g, a', )B. Therefore, the first n elements of (8 a,)B and
all the elements of a_b% — a,b' and (g, a',)B each have at least one
different quadratic element. From Equation (9) and Theorem 2.1, we can
conclude that u{AB} = n® + 2n + 1. _

In Section 4, we found an algorithm to compute a_b', — a,b" (note that,
as the vectors of a_b*,— &b, are arbitrarily related, computing a_b*, — 3,b*
is equivalent to computing ab' + cd*). In order to find an upper bound on
#{AB}, we need only to find an algorithm to compute the product of vectors
and a Toeplitz matrix. It is shown in [8] that this can be done in 2n + 1
multiplications. The algorithm presented in [8] uses an excessive number of
additions when n is large. To avoid the large number of additions, we can
extend B to a circulant matrix of size 2n + 1 or larger. Then 3(AB) can be
computed as two 2n + 1 point (or larger) circular convolutions. These can be
computed with fast Fourier transforms (FFTs) in O(nlog n) additions and
O(nlog n) multiplications [3]. Therefore, the computation of 3(AB) requires no
more than 4n + 2 multiplications, and a practical algorithm to compute J(AB)
can be found that uses O(n log n) multiplications. Equation (10) now allows us
to find an upper bound on p{AB} (see Table 2).

We can use the above method to find lower and upper bounds on {AB}
in the special cases A = B and/or A and B symmetric. First, we find the
number of elements in the border that are linearly independent of each other
and the linearly independent elements of the related sums of outer products

TABLE 2
MULTIPLICATIVE COMPLEXITY OF TOEPLI™Z PROD ¢ %"

ni-}

Problem n Lower bound Upper bound  Practical algorithm

AB a4+ 2n+1 n?+6n+ 2 n® + O(nlog »)

AB,sym. Even (n®+2n+2)/2 (n®+ 40+ 2)/2 n%/2 + O(nlog =
AB,sym. Odd (n®+2n+1)/2 (n®+4n-1)/2 0®/2 + O(nlog n)
A? (n®+3n+2)/2 (n®+9n+4)/2 n2/2+ O(nlog i}
A% sym.  Even (n2 + 4n)/4 (n® + 8n + 4)/4 n?/4 4 O(nlog n)
ALsym.  Oud (n®+dn-1)/4 (n2+8n-1)/4 n%/a+ O(nlog n)

°A and B are arbitrary (n + 1) X (n + 1) (symmetric) Toeplitz matrices.
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(see Table 1). The nuraber of suck elements plus the number of linearly
independent terms in the sum of outer products is a lewer bound on the
number of multiplicatior. required.

In finding upper bounds, we try to take advantage of any added structure
to reduce the number of multiplications used to compute d(AB). Specifically,
when A and B are symmetric, we have a_= a, and B = B!, so that (a"
ao)B = [(ay a",)JI(JBJ) = [(ao a',)B]J. The matrix J is the anti-diagonal ma-
trix. Hence 9(AB) is specified by the first column of AB. Also, when B is
symmetric and n is odd, we can save one multiplication when computing (a,
a',)B [14]. As Table 1 makes clear, the condition A = B and/or A and B
symmetric also adds structure to the related cuter product. We know from
Section 4 that this structure allows us to find faster algorithms to compute the
related outer products. The resulting upper and lower bounds for u{AB} are
presented in Table 2.

6. TOEPLITZ MATRIX INVERSION

We will find upper bounds for the number of multiplications needed to
compute A~ ! in essentially the same way that we found upper bounds on the
multiplicative complexity of AB. Upper bounds will come from adding the
number of multiplications used to compute the border of A~! to the number
used to compute the related outer product. Lower bounds will come from
estimating the dimension of the span of the output.

As noted in Section 3, dA~! can be computed with O(n log n) multiplica-
tions and many more additions, or O(n log® n) multiplications and a similar
number of additions. Because b_b‘,— b, bt can be computed with (n? + n)/2
multiplications, computing all of A~! requires at most n2/2 + O(nlog n)
multiplications. (Note: The algorithms presented in [1, 2, 17] are only valid
when the leading submatrices of A are nonsingular. Also, the Trench formula
[Equation (5)] is only valid when b, # 0. However, these singular cases do not
change the formal arithmetic complexity of the problems.)

To find a lower bound on the number of multiplications required to
compute A~ !, we wish to find dim(L{A~'; H/A}). From Proposition 3.1, we
see that the mapping of the border of A to the border of its inverse is bijective.
Thus, the 2n + 1 border elements of B can be viewed as virtual indetermi-
nates. From case 2 in Section 4, we see that

dim(LG{aB U (b_b4-Bb,B); H}
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TABLE 3
MULTIPLICATIVE COMFPLEXITY OF INVERTING AN (n + 1) X (n + 1) TOEPLITZ MATRIX
e}
Symmetric Lower bound Upper bound Practical algorithm
No n{n — 1)/2 n2/2 + Ofnlogs) 22/2 + O(nlog? n)
Yes n?/4[(n? — 1)/4, nodd] n%/4 + O(nlogn) n2/4 + O(nlog®n)

Because there are only 2n + 1 distinct elements in A, it follows that

n’ —n

{130 oV ) 1) -

1y 2

We can now use Equation (5) and Theorem 2.1 to deduce that

p{A™'} = dim(Le{A; H/TG{A}}) = fﬁg‘lz (11)

The nature of this lower bound is slightly different from that of the lower
bounds of the last two sections. In the previous cases, we found the exact
dimension of the span of the ouiputs, which we used as a lower bound on the
multiplicative complexity. Here, we have only found a lower bound on the
dimension of the span of the outputs, which in turn bounds u{A~'}. However,
finding an exact value for dim(L;{A™%; H/L;{A}}) cannot improve the
bound given by Equation (11) by more than 2n + 1 multiplications.

The results of this section can be extended to A symmetric in a straightfor-
ward manner. The border of A (or A™!) is now taken to be its first column.
The related outer product is b b, — b_b', (case 4 of Section 4). We can now
oroceed as above. Upper and lower bounds for computing A~! for the
symmetric and general cases are listed in Table 3.

7. CONCLUSION

This paper has shown that a relationship similar to Trench’s formula exists
between the border and the interior of the product of Toeplitz mairices. By
using the Gohberg-Semencul formula, we can express the inverse of a Toeplitz
matrix as ihe sui of wo lower/upper Teeplitz products. An important
difference between Toeplitz products and inverses is that no such formuia
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exists for Toeplitz products, as the so-called displacement rank of a Toeplitz
preduct is four [5].

Both Toeplitz products and inverses were seen to be obtainable from their
borders through the sum of two outer products, and the added structure for
cases when the matrices have additional imposed structure was also noted.
Practical algorithms were given for all problems.

By deriving lower bounds for the probiems, it was shown that any algo-
rithm used te calculate the product or inverse of Toeplitz matrices must use
O(n?) multiplications. In fact, all the algorithms that were given are asymptoti-
cally optimal, in the sence that the ratio of multiplications used to the derived
lower bounds tends to unity as n tends to infinity.

The fact that these problems are lower bounded by O(n?) is indeed quite
surprising when compared to general matrices. For general matrices, the
order of multiplicative complexity is known to be the same for matrix inver-
sion, system solution, calculation of determinants, and matrix multiplication
[12]. In contrast, the order of complexity for inverting a Toeplitz matrix is
higher than for solving a Toeplitz system of equations. Moreover, while
calculating the inverse of a Toeplitz matrix requires O(n?) multiplications, the
algorithm given in [1] can be used to calculate the determinant of a Toeplitz
matrix in O(n log n) multiplications and many more additions, or O(n log? n)
additions and multiplications.

It is also interesting to compare p(AM) with pu(AB), where A and B are
Toeplitz matrices and M is a general matrix. The product of a Toeplitz matrix
and a general matrix can be computed with O(n®) multiplications (using n
Toeplitz-vector products), so the order of the multiplicative complexity is not
reduced when the second matrix is Toeplitz. However, if we use n optimal
Toeplitz-vector products, we will use more than O(n?) additions.

In this paper, we have dealt with general Toeplitz matrices. The situation
simplifies considerably when we deal with lower (or upper) triangular Toeplitz
matrices. Lower triangular Toeplitz matrices are closed under multiplication
and inversion. Obtaining the product of two such matrices then reduces to
computing the product of a Toeplitz matrix and a vector. Also, the inverse of a
lower triangular Toeplitz matrix can be computed in O(n) multiplications [8].
The techniques developed in this paper can be used to show that the
multiplicative complexity of multiplying an upper triangular Toeplitz matrix by
a lower triangular Toeplitz matrix is n® + O(n). [A practical algorithm would
use n® + O(nlog n).]

An important open question is finding the order of the multiplicative
complexity of computing the border of the inverse of a general (or symmetric)
Toeplitz matrix. Because the border has only 2n + 1 elements, direct use of
Theorem 2.1 cannot give a lower bound that is any better than O(n). (In fact,
by considering the special case when A is circulant, we can use Theorem 2.1
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to obtain a lower bound of n + 1 multiplications.) Therefore, either a different
lower bounding technique will have to be used or a more efficient algorithm
devised before the multiplicative complexity of this problem can be deter-
mined.

APPENDIX A. PROOF OF PROPOSITION 3.1

We begin by showing that B is persymmetric, i.e., that B, ; =B, _; . ..
Without loss of generality, we can assume i + j < n. Then from Equation (5),
we have

n—j—i—1
Bi,j - Bn—j.n—i = kg (b_b:_— b+bt‘)i+k,j+k
A=j=i=1
= kz (b-i—kmlbj+k+l - bn-—i-—kb-n+j-k)
Bej=i-1 0
= Z b_i_k-1bjaker = b; b_ i1
o k4 l=vl§-l’-l JEl+1Y -i-1-1
= (),

Define CeR"*" as
1
S t i =
C.,=B,, bo(%"'j)”)""" i,j=0,...,n-1.
Then
1
- _— t s e
B,,=C,;+ bo(i"‘B‘-)"i’ i,j=0,...,n-1. (12)
Equations (5) and (12) imply

1
Bivr,jr1=C, ;+ fg:(h_ba),.,j i,j=0,...,n—1, (13)
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We now use Equations (12) and (13) and the fact that B is persymmetric to
partition B in two ways:

bo bt

1
el t
N IV B il
B bo - Et_ bo

Partition A in a similar manner,

Qg atl
a,

A=

- (i ;'z) (15)

By definition, BA = I, 1)x(n+1)- Block multiplying the first partitions for
B and A, we obtain

aobo + bt.'.az boatl + b:_ﬂ

1 1
b_a, + -l-,-;-b-b'_yaz +Ca, b_al+Csx+ z——b_bﬂf.ﬁ/

0
Y
onxl Ian

Therefore,
b_ai + Ct+ 1b_blr = Lo,
and
byal + b', o= 0.
Hence,

Co=1,xp

so that &= C~ L
In an analogous manner, we can block multiply the second partitions of B
and A given by Equations (14) and (15). This will result in the conclusion that
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&' = C~L. It follows that & = ’. From Equation (15), we can now see that
A is a Toeplitz matrix, proving Proposition 3.1.

The authors wish to thank Dr. Ephraim Feig of IBM Thomas ]J. Watson
Research center for comments on earlier versions of the manuscript, among
other things bringing [11] to our attention and mentioning the algorithm for the
first case in Section 4.
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