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An (It 9 1) X (n + 1) Toeplitz matrix is a matrix of the iom 

= 

a0 al l ** an-1 ali 
a_1 a0 l -• ala-2 a*-1 
. . . . 
. . . . 
. . . . 

a,-, a2+ l ** a0 a1 

a -ll al_n *** a-, %I 

, 0 1 

oeplitz m~t~ces play an imp ant de in many paob- 

similar and important 
is a Nanlcel matrix if 
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simpler problem of finding good algorithms for computing sums of outer 
products. We use this approach to derive efficient algorithms for Toeplitz 
inver,rion and multiplication. These algorithms give us ii($) upper bounds for 
the number of multiplications which differ from the lower bounds only in 
lower order terms. 

In the next section, we introduce some notation and indicate the lower 
bounding techniques that will be used. Section 3 relates the inverse and 
product of Toeplitz matrices to some structured outer product problems. 
Section 4 investigates the complexity of these outer products. Sections 2-4 are 
used in Sections 5 and 6 to come up with complexity bounds as well as 
practical algorithms for the product and inverse problems. 

2. BOUNDING TECHNIQUES 

In this Taper, we are concerned with finding upper and lower bounds for 
the number of multiplications required to perform various computations on 
Toeplitz matrices. The emphasis is on multiplications because a theoretical 
framework exists which allows us to easily find lower bounds for the number 
of multiplications required for a broad range of computations. 

Finding an upper bound for the number of multiplications required to 
perform a given computation is straightforward: we describe an algorithm and 
count the number of multiplicatious used. In all of the algorithms described in 
this paper, the number of additions used will be of the same order as the 
number of multiplications used, or else we will be able to obtain such an 

goritbm by only slightly increasing the rrumber of multiplications. 
To find lower bounds, we rely on results described in [14]. 

defining notation. Computations are performed over the field 
rithm is denoted by B c W. The elements of B are referred to 

is a sequence of elements from H, each element being either 
m, difference, product, or quotient of two previous elements. 

ally referred to as simply a nwltiphcatkm) is a step where 
the element from W does not come from B, and cannot be expressed as the 
linear combination over G of previous elements. 

this model, an algorithm can be thought of as a collection of field 
involving rational functions. Let cc{ fr, l l l , fn} be the minimum 

number of multiplications that any algorithm uses to compute fi, l 9 l , f’ from 
ties in jk{fl, l l l , fn) , the model does not allow 

sion by a rational function that may take on 
nction is not the zere nctiQn . 
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jet I,,( X; Z) denote the linear span over G of X in I, and let the 
quotient space of Z over J be denoted by Z/J. We then have the following 
theorem, which we state without proof. 

THEOREM 2.1 [14]. p(fi,* l 0, fn) 2 dim( LG(fI,- l 0, fn; H/&(B))). 

eorem 2.1 will be used in Sections 4-6. As we will always be computing 
functions of matric we introduce the following simplified notation. 

be a matrix, and let be a matrix function of A. L,(A) refers to the 
span of the set of elemen )} is the number of scalar 

from the elements of A. 

EPLITa, PRO INVERSES TO 

In this section, we demonstrate the relation of the corn~~ta~~o~~ of i 

and products of Toeplitz matrices to the computation of sums of certain 
uter products. 

in with multiplication. Let A and be (n + 1) x (n + 1) Toeplitz 
efine the first row and column of as (a, d+) and (a, a’_)‘, with 

a’.,. ( a, a2 l l ’ 

an 

(a_.1 8-2 “. 

so ne t 

( a, on-1 l ‘* 

and 

( 
a -n 

Qrl ) 

a --tl . 1 

a1 ) 

a-1). 
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Because A and B are Toeplitz matrices, they can be partitioned as 

and 

Multiply the first partitions to obtain 

AB= I aobo + a!+b_ 

a-b, + d b, 

Therefore, 

( 1 AB i+1,j+1 = (a_b!++&a)i,J, i,j=O ,..., n- 1. (2) 

Multiplying out the second partitions for A ax! B til! simi!ar?y yield 

(AB)i,j = (dI+ S+b’_)*,j* i,j- O,*..,n- 1. 0 3 

Combining Equations (2) and (3), we obt 7 

( 1 AB t+l, j+l = (AB)i,j + (a-b:- ~+g’_)(,j, i, j = 0,. . -9 n - 1. (4) 

Equation (4) shows how to compute AB from its border via the computation of 
the sum of outer products a_ b:- Z+k_. This equation can be generalized to 
the product of rectangular Toeplitz matrices. A consequence of Equation (4) is 

B is a Toeplitz matrix if and only if a-b:- 1+6’_ = 0. This fact has been 

We now move on to inversion. The Trench algorithm [14,3] is a two-stage 
algorithm for computing the inverse of a Toeplitz matrix. In the first stage, the 
border of the inverse is computed. The interior of the inverse is computed 
from its border in the second stage. Each stage requires O(n”) multiplications. 

Several other algorithms exist for computing the border of the inverse. 
Among the more recently introduced are a class of “doubling” algorithms. 
Practical versions of these algorithms require O(n log” n) multiplications and a 
similar number of additions 11, 2, 171. It is &so possible to implement the 

(7a log n) multiplications but many more additions [I7]. 
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We are therefore concerned only with the second stage of the algorithm. 
Specifkally, let A be given as in Equation (11, and let 38 be its inverse. The 
Trench algorithm allows for the computation of via the relationship 

Cohberg and Semeneul 

1 

b, ( i,j=O ,..., n- 1. (5) 

[6, 7] obtained an expression for as the sum of 
products of triangular Toeplitz matrices: 

b, b. .m. 0 

\ 

b+ l a* b-, 
b, . . . b l-n 

. . 

. . 

6 l l * b, 

0 6 

which is algebraically equivalent to the Trench formula. 
ation (5) or (6) imposes a rigid structure on the form of the inv 

matrix. In Section 6, we will find a lower bound for the 
multiplications required to invert a Toeplitz matrix. n so doing, the 
arises whether the inverse of ch a structured matrix is necessity 
This questIon is answered by e following proposition. 

e proof of Proposition 3. II is given in Appendix A. 

then our derivation. 
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TABLE 1 
TOEPLHZ MATRIX PROBLEMS AND RELATED OUTER PRODUCTSa 

(n + 1) X (n 9 ij 
Toeplitz matrices 

R X n outer 
product 

symmetric 

A2, symmetric 
A-’ 
A‘ I, symmetric 

abt + cdt 
ab’ - iit? 
abf - ikit 
aaa’ - 88 --t 

ab’ - id 
t -4 aa -aa 

“A and B are arbitrary (symmetric) Toepiitz matrices, and a, 
b, c, and d are arbitrary vectors. 

may view aA as the first (or last) row and column of A. Alternatively, i3A can 
n as the first and last row (or column) of A. Any of these four 

allows one to obtain either AR or A” from its border and two 

we impose additional structure on the matrices involved, we will obtain 
hue in the outer products. If the Toeplitz matrix that we wish 

rt is symmetric,’ then its inverse will be symmetric, so we will have 
_ in Equation (5). Similar structure is added to matrix multiplication if 

ces are both symmetric and Toeplitz. If we wish to compute the 
of a Toeplitz matrix, we will have a+ = b, and a, = B _ in Equation 

exact structure of the sums of outer products for each problem is 

* PIXXITY OF THE OUTER PRODUCTS 

vious section, we demonstrated the connection between Toeplitz 
ems and four structured n x n outer products: ab’ + c&, ab’ - 

5;‘. The advantage of doing this is that the complex- 
sis of the outer product problems is relatively simple. 
is section, we carry out the analysis of the multiplicative complexity of 

the outer products. It will be shown that all of the problems possess Q(n2) 
j~~~v~ complexity, and that the more structured outer products require 

symmetry in a Toeplitz matrix is equivalent to the structure 
ankel matrix. 
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fewer multiplications than the less structured ones. To simplify the discussion, 
awe will henceforth assume that n is even. The analysis for n odd is very 
similar. When results differ, the results for n odd will be put in parentheses. 

The elements of sums of outer products are quadratic forms; that is, their 
elements can be written as IZCY~,~Q~~~, where ai,j E G, and the qi’s are 
elements of the vectors a, b, c, and To obtain lower bounds on the number 
of muhiplications required to compute these sums of outer products, we will 
use the results of Section 2. If the qi’s are indeterminates, then different 
quadratic terms are linearly independent of each other and the qi’s. We now 
find bounds for each of the four cases: 

Ci+ldj+l). The (#)&I element is the only 
so all elements are independent. To calculate 

we use the matrix multiphcation algorithm from [16]. Compute aici 
and bidi for i = 1,. . . , n (2n p’s). We can now obtain output elements at one 

lication each through 

aibj + Cidj = (ai + dj)( ci + bj) - aici - bjdj. 0 7 

It follows that c y %g r&2 + 2n. 

f’ = {ai+lbj+l - b,_ia,_j). he elements for which i + j 
ependent, as only the (@th element has the term ai+lbj+l. 

is matrix, proceed as above with appropriate substitutions. Thus 
We use Equation (7) only when i + j < n 
~‘)n_l_j R--l-i. Therefore, (n2 - n)/2 < . 

airs of elements of this matrix can be computed as two 
point circular convolutions. Specifically, 

erefore, computing 
circular convolutions: 

t is equivalent to computing the following 

( %P -an-i * ) ( +1 bn_i), i = ,*-•, n- 1, j--O ,..., i - 1. (8) 

e 

e only convolutions 
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that have to be computed in (8) are those for which i, j < ra /2 - 1. This 
leaves n2/4 two point circular convolutions. A two point circular convolution 
can be computed with two multiplications [3]. We can therefore compute 
abt - S’ in n2/2 multiplications. It is easy to see that the outputs of the 
circular convolutions described by (8) for which i, j < n/2 - 1 are indepen- 
dent. Therefore, p{abt - G2;‘) = n2/2 [(n” - I)/2 for n odd]. 

4. aa’ - IZ View this matrix as a special case of the previous matrix, 
with a = b. The outputs of (8) will th en not change if we switch i and j, so we 
only need to compute those convolutions for which j < i < n/2. Also, when 
i = j we only need one multiplication, as 

( ai+ -a,-1 * ai+1 
I( On-i 

) (( 
= ai+l - a,-i)(ai+l + a,-1 

) ) 
0 l 

The elements of aa’ - I-’ F aa ror which s’ 2 j and i: > iz - j - I are independent, 
so c((aat - St) = n2/4 [( n2 - I)/4 for n odd]. 

As a final note, let us say that for the inversion problem the outer product 
of interest is (l/ba)(b+b$_b+). Th e di vision by bo requires no more than n 
additional multiplications, as we can first divide the elements of b, by &a and 
then proceed as above. Because ba is not among the elements of b, or b,, the 
dimension of the span of the outer product is not affected by the division by 
b 0’ 

5. TOEPLITZ MATRIX MULTIPLICATION 

Equation (4 relates the computation of AB to the computation of &AB) 
and a-b:- 6+ k !_. The relatively simple structure of B(AB) and a _b$- ii+&_ 
will be exploited in this sectian to obtain lower and upper bounds on p{ AB) . 
From Equation (4) we can readily see that 

} 2 dim( Lc( {a-b:- Ii+&} U a(AB)}) 0 9 

and 

~{AB} < p(a-W+- g+fq + cL(a( ( 1 10 

We will consider lower bounds first. For definiteness, we will take a( 
as the first and last row of at is, as (a, at+) 

e rig 
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The term sob, has unit weight in the ith element of (a, a!+)& while it has 
weight in the other elements of (a, a!+ , in all the elements of a-b!+- 

t_, and in the first n elements of (3~ Likewise, the term aObi_” has 
unit weight in the ith element of (Ht_. a,) ile it has, for i < pt, zero weight 

in the other elements of (3_ a& in all the elements of a _ b: - Z+k , and in 
all the elements of (a, jE. Therefore, the first 
alall the elements of a :- Z+6’_ and (a0 a$ 

elements of (;i’_ a,)B and 
each have at least one 

element. From Equation (9) and Theorem 2.1, we can 

m to compute a-b:- i+L’_ (note that, 
are arbitrarily related, computing a _ bf+ - 5+&t_ 

). In order to find an upper bound on 
thm to compute the product of vectors 

[8] that this can be done in 2n + 1 
hcations. The algorithm presented in [S] uses an excessive number of 

lons when ii is large. To avoid the large number of additions, we can 
to a circulant matrix of size 2n + 1 or larger. Then iI can be 

COPnput@d as two 2n Iar convolutions. These can be 

Equation (10) now allows us 

symmetric. First, we find the 
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(see Tabie I). The number of such elements plus the number of linearly 
independent terms in the sum of outer products is a lower bound on the 
number of multiplicatior- required. 

In finding upper bounds, we try to take advantage of any added structure 
to reduce the number of multiplications used to compute @AB). Specifically, 
when A and B are symmetric, we have a_ = a+ and B = B’, so that (5’_ 

ao)B = [(a, a%l(JBJ) = [( a0 a:)B]J. The matrix J is the anti-diagonal ma- 
trix. Hence +B) is specified by the first cdumn of AB. Also, when B is 
symmetric and n is odd, we can save one multiphcation when computing (a, 
a’,)B [14]. As Table 1 makes clear, the condition A = B and/or A and B 

symmetric also adds structure to the re!ated outer product. We know from 
Section 4 that this structure allows us to find faster algorithms to compute the 
related outer products. The resulting upper and lower bounds for p{AB} are 
presented in Table 2. 

6. TOEPLITZ MATRIX INVERSION 

We will find upper bounds for the number of multiplications needed to 
compute A-’ in essentially the same way that we found upper bounds on the 
multiplicative complexity of A.B. Upper bounds wd! come from adding the 
number of multiplications used to compute the border of A-’ to the number 
used to compute the related outer product. Lower bounds will come from 
estimating the dimension of the span of the output. 

As noted in Section 3, aA’l can be computed with 0( n log n) multiplica- 
tions and many more additions, or 0( n log2 n) multiplications and a similar 
number of additions. Because b _ b!+ - b +k can be computed with ( n2 + n)/2 
multiplications, computing aI1 of A’ 1 requires at most n”/2 + O(n log n) 
multiplications. (Note: The algorithms presented in [l, 2, 17] are only valid 

submatrices of A are nonsingular. Also, the Trench formula 
ly valid when b. # 8. However, these singular cases do not 

change the formal arithmetic complexity of the problems.) 
To find a lower bound on the number of multiplications required to 

compute -‘, we wish to find dim( &(A- ‘; H/A}). From Proposition 3.1, we 

see that the mapping of the border of A to the border of its inverse is bijective. 
Thus, the 2n + 1 border elements of B can be viewed as virtual indetermi- 
nates. From case 2 m Section 4, we see that 

( 
n2 - n 

&c -#- 2n + 1. 
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TABLE 3 
MULmPHCA.lWi$ C.U&ii-~,i>.w- = _ . -. -- -..* =.vrw flF INVERTING AN ( n + 1) ?(. (?? + 1) TOEPLIlZ MATRUC 

Symmetric Lower bound Upper bound Practical algorithm 

NO 

Yes 
n(n - 1)/Z $/2 _c O(n 1og z-) n2$ + O(n log2 n) 

n2j4[(n2 - 1)/4, n odd] n2/4 + 0(x log FL) s2,‘4 + Q(n log2 n) 

Because there are only 2n + 1 distinct elements in A, it follows that 

w (b-b:- lb+ t_); H&{A>>) = jz2, ’ l - I 0 

‘We can now use Equa.tion (5) and Theorem 2.1 to deduce that 

( 1 11 

The nature of this iower bound is slightly different from that of the lower 
bounds of the last two sections. In the previous cases, we found the exact 
dimension of the span of the outputs, which we used as a lower bound on the 
multiplicative complexity. Here, we have only found a iower bound on the 
dimension of the span of the outputs, which in turn bounds p(A- ‘1. However, 
finding an exact value for dim( &(A- ‘; H/L,(A))) cannot improve the 
bound given by Equation (11) by more than 2 n + 1 multiplications. 

e results of this sectio n can be extended to A symmetric in a straightfor- 
anner. The border of A (or is now taken to be its first column. 

ed outer product is b+bf,- : (case 4 of Section 4). We can now 
proceed as above. Wpper and lower bounds for computing A-’ for the 
symmetric and general cases are listed in Table 3. 

is paper has shown that a relationship similar to Trcnch”s formula exists 
etween &e border and the tntetio- L of the product of Toe&z matrices. 

the @ohberg-Semencul formula, can express the inverse of a To 
x as &s S!.UG CYf t%X lkowcr/u roducts. An important 

Fence between Toephtz products and inverses IS that no such formuia 
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exists for Toeplitz products, as the so-called d@hmt rank of a Toeplitz 
product is four [5]. 

Zoth Toeplitz products a__ nJ inverses were seen to be obtainable from their 
borders through the sum of two outer products, and the added structure for 
cases when the matrices have additional imposed structure was also noted. 
Practical algorithms were given for all problems. 

By deriving lower bounds for the problems, it was shown that any algo- 
_LLm 11u1111 “JK/” LY ” **n-A l * -a!rrr!ate the product or inverse of Toeplitz matrices must use 
0(n2) multiplications. In fact, all the algorithms that were given are asymptoti- 
cally optimal, in the senre that the ratio of multiplications used to the derived 
lower bounds tends to unity as n tends to infinity. 

The fact that these problems are lower bounded by 0(n2) is indeed quite 
suqrising when compared to general matrices. For general matrices, the 
order of multiplicative complexity is known to be the same for matrix inver- 
sion, system solution, calculation of determinants, and matrix multiplication 
[12]. In contrast, the order of complexity for inverting a Toeplitz matrix is 
higher than for solving a Toeplitz system of equations. Moreover, while 
calculating the inverse of a Toeplitz matrix requires 0(n2) multiplications, the 
algorithm given in [l] can be used to calculate the determinant of a Toeplitz 
matrix in O(n log n) muhiplications and many more additions, or O(n log’ n) 
additions and multiplications. 

It is also interesting to compare p(AM) with @B), where A and B are 
Toeplitz matrices and M is a general matrix. The product of a Toeplitz matrix 
and a general matrix can be computed with 0jn2) multiplications @sing n 
Toeplitz-vector products), so the order of the multiplicative complexity is not 
reduced when the second matrix is Toeplitz. However, if we use n optimal 
Toeplitz-vector products, we will use more than O(n’) additions. 

In this paper, we have dealt with general Toeplitz matrices. The situation 
simplifies considerably when we deal with lower (or upper) triangular Toeplitz 
matrices. Lower triangular Toeplitz matrices are closed under multiplication 
and inversion. Obtaining the product of two such matrices then reduces to 
computing the product of a Toeplitz matrix and a vector. Also, the inverse of a 
lower triangular Toeplitz matrix can be computed in O(n) multiplications [ill. 
The techniques developed in this paper can be used to show that the 
multiplicative complexity of multiplying an upper triangular Toeplitz matrix by 
a lower triangular Toeplitz matrix is n2 + O(n). [A practical algorithm would 
use n2 + O(n log n).] 

An important open question is finding the order of the multiplicative 
complexity of computing the border of the inverse of a general (or symmetric) 

e border has only 2n + 1 elements, direct use of 
ound i&at is any better an O(n). (In fact, 

is circ e can use 
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to obtain a lower bound of n + 1 multiplications.) Therefore, either a different 
lower bounding technique will have to be used or a more efficient algorithm 
devised before e multiplicative complexity of this problem can be deter- 
mined. 

PPEN OF OF ~~~FQ§I~ION 3.1 

e begin by showing that is persymmetric, i.e., that 
t loss of generality, we can assume i + j C: rz. Then 

n-j-i-l 

i,j - n-j,n-i = ( 
b-b:-- +b’_) i+k, j+k 

n-j-i-l 

zz b 
k=O 

n-j-i- 1 

b b -i-k-l ick+l - _ h --i-1- 1 

i.j 

i,j==Q,...,n- 1. 
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We now use Equations (12) and (13) and the fact that B is persymmetric to 
partition in two ways: 

Partition A in a similar manner, 

By definition, BA = I~,+l~,~,+l~. Block multiplying the first partitions for 

B and A, we obtain 

a,b, + b!+a2 boa\ + b&d 

b_u, + $b_b!+a, + Ca2 b-a\ + Cd+ 
0 

$b_b!p’ 
0 

1 4xn = 1 I 0 nXl Inxn ’ 

Therefore, 

b-a\ + Cd+ $a_b$‘= I,,, 
0 

boa’, + bid= fix,,. 

Hence, 

e second partitions of 
is will result in the conclusion that 
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Jg’ = 

A is a 

at d= d’. Equation (ES), we can now see tht 
Bit2 matrix, p-sting Proposition 3.1. 

ib systems of equa- 
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