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Defining H'(x)=log Z(H)+ H(x)/ T, also a Walsh expres-
sion of degree d, and applying Theorem 1 with H' and g(x)=
exp(— x) yields that all information on 7 is contained in the
correlations of degree < d. This is equivalent to the statement
that a dth-order Boltzmann machine without hidden units is
uncapable of capturing correlations of degree > d, a well-known
“folk-theorem,” unproven until now.
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The Commutativity of Up /Downsampling in Two
Dimensions

Jelena Kovadevi¢ and Martin Vetterli

Abstract —It is shown under which conditions up- and downsampling
can be interchanged in two dimensions. This is the generalization to
arbitrary two-dimensional lattices of the result that one-dimensional up-
and downsampling commute iff their sampling rates are coprime.

Index Terms —Multirate processing, multidimensional sampling.

I. INTRODUCTION

1t is known that in one dimension we can interchange up- and
downsampling if and only if their sampling rates are coprime
[1}. To the authors’ knowledge in two dimensions the problem
has been open until now. When the two-dimensional sampling is
separable, the extension of the result is trivial. The interesting
case appears when the two-dimensional sampling is represented
by arbitrary lattices. Thus conditions under which the commuta-
tivity can be achieved are more complex and are closely related
to the notion of the greatest common sublattice of the sampling
lattices in question. In this correspondence, after some prelimi-
naries, we state and prove a theorem solving the problem of
commutativity in two dimensions. Some illustrative examples are
given in Figs. 3(a)-3(c).

One of the possible applications of the resuit would be in
building multirate filter banks with rational sampling rate
changes [2]. In [2] a direct method for designing filter banks with
arbitrary rational sampling rate changes was given, which as its
key element uses the result on commutativity. There it was
shown that, in order to avoid designing one filter bank which
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Fig. 1. Hexagonal lattice A together with its unit cell.

would divide the spectrum into a number of parts and the other
one which would resynthesize the appropriate subspectrums so
as to get fractional parts, one had to interchange upsampler with
a downsampler in each branch. Note that throughout the paper
lem(a, b) will denote the greatest common multiple of a and b
and gcd(a, b) their greatest common divisor; bold letters will
denote vectors and matrices.

I1. SoME ResuLTs FROM THE THEORY OF LATTICES

This section presents some basic concepts from lattice theory
(31 ]

Definition I: Let a,, a, be two linearly independent real vec-
tors in two-dimensional real Euclidean space $22. A lattice A in
R? is the set of all linear combinations of a;,a, with integer
coefficients:

A={Aa,+ry8;,0,4, €2} 1)

If D is a matrix with columns a,, a,, then a lattice is the set of
all vectors generated by D-n,n € g;ﬂ. Since the elements of D
belong to 2, which is a principal ideal ring, unimodular matrices
would be all those with determinant equal to +1 [4]. In what
follows all matrices involved will be integer matrices. Note that a
basis for a lattice is not uniquely determined since D-¥ with
unimodular V is again a basis for A, while d(A)=I|det(D)| is
unique, and physically represents the reciprocal of the sampling
density [5]. Thus, for example, g,ﬂ is the lattice generated by a
22 identity matrix I that corresponds to the standard or-
thonormal basis. Since only d(£?) is unique, it follows that 2?
can be generated by any unimodular D.

Definition 2: If every point of lattice A is also a point of
lattice M, then we say that A is a sublattice of M.

The determinant of A is then an integer multiple of the
determinant of M.

Definition 3: Let A| and A, be lattices. The greatest common
sublattice of A, and A,, denoted by gecs(A,, A,), is the set of all
points belonging to both A, and A, [6], i.e.,

ges(A, A)=ANA,. (2)

Then it is obvious that d(ges(A,,Ay)) =k d(A,) = k,d(A,). It
is often useful to choose a basis so as to have a simple form of
D. It can be shown [3] that D can always be uniquely repre-

sented as
b
p-(2 4). ©)

where a>0, d >0, and 0 < b <a. This representation will be
used throughout this correspondence. A unit cell U will denote
a set of points belonging to the parallelogram formed by the two
basis vectors a;, a,. Note that it contains exactly det(D) points.
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T
D,_t p,=2", where j is a nonnegative integer. 10 prove this,
we only have to show that under this assumption, there exists a
source distribution such that R; = Ry It is easy to see that

= Hy(p$301) - Hy(pX%) + [ P30 + pls ]
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Fig. 2. (a) Downsampler followed by upsampler. (b) Upsampler fol-

lowed by downsampler.

Fig. 1 shows an example of a lattice together with its unit cell.
Also, in what follows a rectangular lattice is the one with b =0
in (3) while a quadratic one is rectangular with a = d. Now, we
state a proposition showing how to change a basis for 322 SO as
to transform any lattice into a rectangular one.

Proposition 1: Any lattice generated by D can be represented
as a rectangular lattice in 22 generated by some unimodular I;.

Proof: A matrix whose elements belong to a principal ideal
domain possesses a Smith normal form [4], i.e., it can be written
as

D=ILAL, 0

where I, and I, are unimodular and A is a diagonal matrix.
Rewrite (4) as

DI;'=TA: )

Since I, is unimodular, I 1 is unimodular as well, and thus
DI; ! still represents the same lattice. Now (5) is exactly what we
want since the desired rectangular latice is represented by A
and I, is the matrix containing the nonstandard basis for 2. O

III. Tue CommuTaTIVITY OF UP/DOWNSAMPLING

Let us briefly recall the one-dimensional result [1]: Upsam-
pling by a factor of N, and downsampling by a factor of N, can
be interchanged if and only if N, and N, are relatively prime.
Going back to the original problem, let us consider Figs. 2(a)
and 2(b). D; and D, are matrices corresponding to the down-
sampling and upsampling lattices A; and A, respectively. Note
that U, will denote the unit cell of the first lattice. In the case
where downsampling by D, comes first, the Fourier transform
of the signal at the output can be expressed as [5]:

Y(Q) = X,(D30) = L Y x[(u;)‘lpgn —27(1);)“1:],
N, lkel

(6)

where X, is the signal after downsampling, €} is a two-dimen-
sional frequency vector, and N, =det(D,). If D, came first
instead, we would have

1 B}
r-5 T X, [(D) (@ ~2mh)]

1 _ .
=Ekzux[ng(m) ' -2704(D}) k|, (1)
€l

where X, is the signal after upsampling. In order to have
Y'(©2) = Y"(Q), we must first ensure that the resulting matrices
next to € are the same, i, D, and D] ' have to commute.
This leads to the following combinations of possible up/down-
sampling matrices (assuming D, and D, are of the form (3) with

corresponding subscripts):

1) b;=0Aa,=d,, i.e.,, D, is quadratic and D, is arbitrary,

2) by=0Ab,=0Aa,#d,, ie., D, is rectangular and D, is
rectangular or quadratic,

3) by*0Ad,=a,+b,(d,—ay)/b,, ie, D, is arbitrary
nonrectangular and D, is arbitrary with the given con-
straint on d,.

Next we have to find when the set of vectors generated in (6)
with k €U, is equivalent to the set of vectors generated in (7)
with again k € U,. Calling these two sets 4 and B, we have

A={e-zﬂjw;)—m’ keU,}, (3)
B={e2mP{PV ™" ey} 9

Equivalence of these sets is exactly the possibility of interchang-
ing an upsampler with a downsampler. Note that 4 contains
exactly N, distinct elements, i.e.,

Vk,neU,,
Now we are ready to state the following theorem.

k #n= e 27PN 'k 4 o=27i(DY T \n,

Theorem I: Assuming (D{)~! and D4 commute, an upsam-
pler and a downsampler are interchangeable (i.e., the sets A
and B just defined are equivalent) iff the determinant of the
greatest common sublattice of A; and A, equals the product of
the determinants of A; and A,, ie.,

Vk,nel,, k#n=e mPAPDTE 4 o= 2miDUDDTIN ()
=

d(ges(Ay,Ay)) =d(A,)d(A).
The proof of the Theorem is given in the Appendix A.

(**)

As an illustration, three examples are given in Figs. 3(a)-3(c).
The first one shows what happens if the matrices (D{)™! and
D’ do not commute. The second one is an instance where the
matrices commute but the greatest common sublattice does not
satisfy the condition given in Theorem 1. In Fig. 3(c) a pair of
lattices where the interchange is possible is given. Note that, for
the sake of simplicity, the members of the sets A and B in the
examples are actually the angles in the exponent in (8) and (9).
In each of the examples, the sets 4 and B show explicitly
whether the interchange is possible or not.

To conclude, let us see how Theorem 1 reduces to the
one-dimensional result [1]. The downsampling matrix D, re-
duces to a single coefficient N,, the upsampling matrix D,
reduces to N,, and the greatest common sublattice of the two is
actually the one corresponding to sampling by C = lem(Ny, N,).
Thus (* *) reduces to C = N;-N,, which is equivalent to N, and
N, being relatively prime. Therefore, we have the following
lemma.

Lemma 1: An upsampler and a downsampler are inter-

changeable iff N, and N, are relatively prime, i.e.,
Vk,ne {0 Ny — 1}, k # n = e 2miWN2/NDk o o =2mi(N; /NOR
=

C=lem(N;,N,) = N;*N,,

which is exactly the statement in [1].

IV. ConcLusiOoN

We have shown how to interchange an upsampler and a
downsampler in two dimensions. The result holds for arbitrary
sampling lattices and is a generalization of the one-dimensional
result that an upsampler commutes with a downsampler iff their
rates are coprime.
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Fig. 3. (a) Downsampling lattice is “quincunx,” upsampling one is “hexagonal.” Matrix D, and inverse of D; do not
commute and thus cannot be interchanged. (b) Downsampling lattice is “quincunx,” upsampling one represents separable
sampling by two in both dimensions. Now matrices commute, but greatest common sublattice of the two is the same as
upsampling one and thus this pair cannot be interchanged. (c) Downsampling lattice represents separable sampling by three
in both dimensions, upsampling one is “quincunx.” Matrices commute and greatest common sublattice satisfies conditions of
the Theorem 1. Hence, in this case, up- and downsampler can be interchanged.

APPENDIX A
PrOOF OF THE THEOREM 1

We are going to prove the theorem for each of the three cases
stated at the beginning of Section III.
A Caseb;=0Aa;=d,

Since now D, = a,I and D, is general, the matrix correspond-
ing to the greatest common sublattice of A, and A, is of the
form

_|[lem(a,,a;) kb, +la,
M= o v, | (10)

where k is the smallest integer such that a, divides kd, and a,
divides kb, + la,. Therefore k < a, since we can always choose

D1t D, = Z'I,r\ﬂnere j 15 a nonnegative integer. 10 prove this,
we only have to show that under this assumption, there exists a
source distribution such that R; = Ry It is easy to see that

k = a, satisfying the above stated conditions. We are going to
consider two distinct cases: when a; and a, are and are not
relatively prime.

1) ged(ay,a,)=1: Since a; and a, are relatively prime, the
first entry in matrix M reduces to a,a, and

det(M)=a,a, kd, < a’a,d,. (11)
We can now find k from
4,
kd2=plcm(a,,d2)=k=pm, peP. (12)

Now minimum k can be chosen as above with p=1. Since a,
and a, are relatively prime, a unique / can always be found such
that a, divides kb, + la,. Thus M is completely determined and

= Hy(p$301) - Hy(pX%) + [ P30 + pls ]

[ { St P
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(11) reduces to

det(D,;)det(D
(D;)det(D;) (13)
ged(ay,d;)

a) (= *)=(*): Let us suppose that (*) does not hold, i.e.,

there exist different k and n from U, producing the same
members of the set B, i.e.,

det(M) =

DYDY 'm=p m=k-n, peP’ (14
Since D} and (D{)~' commute, we can rewrite this as
t Dl
o) =4[ 09
or
a, d, b, 16
=my— =my,—+m;—
Py 1a1 P> 2a1 a, (16)

Since ged(ay,a,)=1, my <ay, and p, is integer, it follows that
m; has to be zero. Hence p, = m, d, /a,. Knowing that m, # 0,
m, < a, and p, is integer, we conclude that gcd(a,,d,)>1 and
therefore det(M) < det(D,)det(D,), which is in contradiction
with our assumption.

b) (*)=(+x): Suppose that (**) does not hold, i.e.,
det(M) < det(D;)det(D,). It follows then that gcd(a,,d,)> 1.
Hence we can choose m, and m, as

a;

=0, =—<ay, 17
my m; gcd(ay,d,) a (17)
yielding

0 4 18
Pi=" pz_ng(“l»dz)’ (18)

again a contradiction.

2) ged(ay, a,) > 1: Now, obviously,
det(M)=Ilcm(ay,a,) kd,<a;d,lem(a;,a;)

< det(D,)det(D,), (19)

meaning that (* *) is never satisfied. To prove the theorem in
this case, we have to prove that (*) can never be satisfied as
well.

If ged(a;,d,)> 1, we can always choose m;=0 and m,=
a, /gcd(ay, d,) < ay, showing that (*) does not hold.

If ged(ay,d,)=1, we can always uniquely choose #; and ¢,
such that #,a, + t,a, = 1. Hence the choice

a;

gcd (ay,a,)
if b,#0or

my= <ay, m,=—mbyt,(moda,), (20)
a;

——<a

ged(ay, a,)

if b, =0, shows that there always exists a choice of m; and m,
such that () does not hold.

m, = m,=0 (21)

B. Case b;=0Ab,=0Ana,;#d,

Since both matrices are rectangular, det(D;)=a,d,,
det(D,)=a,d,, and ges(A;,A,) is also a rectangular lattice
with lcm(a,,@,) and lem(d;,d,) on the diagonal. Since
lecm(a, b) = ab /gcd(a, b), we get

det(D,)det(D;) . 22)
ged(ay,a,)ged(dy,dy)

Note that this case is a separable one along the two dimensions
and hence (*) becomes equivalent to having ged(a,,a,) =1 and
ged(d,,d,)=1. It is trivial to see that if the previous is true then
(22) reduces to det(ges(A;, A,))=det(D,)det(D,) satisfying

det(ges(Aq,Ay)) =

(* %), The converse is equally easily proven for if () holds
then both ged(a;,a,) =1 and ged(d;,d,) =1, yielding (*).

C. Caseb,#0Ady=a,+by(d,—a;) /b,

In this case we have an arbitrary nonrectangular matrix D,
and thus we can apply Proposition 1 to transform it into a
rectangular matrix in 322 generated by a nonstandard basis.
Since commutativity is preserved, this instance reduces trivially
to one of the previous two, which concludes the proof of the
theorem. O
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Berlin:

Correction to “On Universal Hypotheses Testing
Via Large Deviations”

Ofer Zeitouni and Michael Gutman

In the above paper,' there is a mistake in the proof of
Theorem 1 (the discrete case). The proof of the Theorem as
written holds true only when all coordinates of P, are strictly
positive (i.e., when 3. = supp P)).

When some of the coordinates of P; are zero, it is clear that
all empirical measures associated with P1 must have suppu, C
supp P,, and the blow up of Q defined in (3) must take place
only in the subset of = that belongs to supp P;. Thus, a priori,
define S = supp P,, and restrict all probability measures to
M(3), letting p,, to be associated with P, if suppp, ¢ 3. The 8
blow up Q° will now be defined w.r.t. My(3), and the rest of the
proof is unchanged.

We thank Yifat Migdal for drawing our attention to the
mistake.
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