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1. INTRODUCTION

Tree-based representations of two- and three-dimen-
sional objects have been used extensively in solid model-
ing, computer graphics, computer vision, and image pro-
cessing. (See, for example, [26, 10, 18, 39, 23].)
Quadtrees and octrees, which are used to represent ob-
jects in 2-D and 3-D spaces, respectively, have been stud-
ied thoroughly for graphics and image processing applica-
tions.

Binary space partitioning (BSP) trees have been used
in computer graphics applications as an efficient repre-
sentation of polyhedra in D-dimensional space (a polyhe-
dron is defined as a boundary with only planar faces [26]).
For example, BSP trees provide an effective tool in de-
termining visible surfaces for polygon rendering and ray
tracing applications [29]. For 2-D applications, the BSP
tree approach partitions the 2-D space, which surrounds
the objects to be presented, by arbitrarily oriented lines.
Recently (see [37, 38]), we proposed using the BSP tree
representation for image processing and computer vision
applications.

In this paper we present a Hough transform-based
method for generating the BSP tree representations of
images in 2-D space. As will be shown, BSP tree-based
segmentation of images provides an effective tool for
achieving high compression rates for image coding appli-
cations. Preliminary results show that compression ratios
in the range of 40-100 are achievable. Moreover, the
method of representation using arbitrarily oriented lines
allows one to perform affine transformations (e.g., rota-
tion and translation) on images very easily. Therefore,
and due to the simple data structure (a binary tree) result-
ing from the binary partitioning, these affine transforma-
tions can be implemented using simple tree traversal al-
gorithms.

In Section 2, we explain the BSP tree representations
of polyhedra, and in Section 3 we provide a high-level
description of image representation using BSP trees. The
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rest of the paper consists of two main sections: Section 4
describes a Hough transform-based, recursive algorithm
for building a BSP tree of an arbitrary image, and Section
5 introduces a multiresolution approach for implementing
the Hough transform-based method described in Section
4. In each of these two sections (4 and 5) we show some
simulation results. Section 6 derives some expressions
for the computational complexity of our proposed meth-
ods, and Section 7 explains the potential of the BSP tree
representation approach for image coding applications.
We conclude the paper with a summary in Section 8.

2. THE BSP TREE REPRESENTATION

The binary space partitioning tree (BSP tree) is an ab-
stract data type that provides a representation of a D-
dimensional space through the use of recursive subdivi-
sion. For the 2-D case, the subdivision is created using
arbitrarily oriented lines. Any straight line 4 creates two
halfplanes, which are distinguished as the negative and
positive halfplanes A~ and A, reflecting whether the dot
product of a point p with h is negative or positive. The
recursive partitioning is a local operation that takes as
input an unpartitioned region R, initially the entire 2-D
plane, and a line k, selected according to various criteria,
that intersects R, and produces as output two new re-
gions formed by partitioning R by h into two half-regions,
R~ and R*. The two half-regions can then be similarly
partitioned by some additional lines, and so on recur-
sively until a termination criterion is met (see Fig. 1).
This results in a hierarchy of regions in which the lowest
level unpartitioned regions, called cells, form a partition-
ing of the 2-D plane.

The data structure used to represent this partitioning is
a binary tree. The root of the tree represents the whole 2-
D space, and it is labeled with the line used to partition it.
The two resulting half-regions are represented by two
child nodes, which may be partitioned as well. A left edge
can be interpreted as representing the action of perform-
ing an intersection with 4~ and the right edge with h*.
Thus, every region in the tree is defined by the intersec-
tion of halfplanes denoted by the edges on the path from
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The 2-D plane

FIG. 1. A binary space partitioning of the 2-D plane.

the root to that region’s node. Because a halfplane is a
convex (unbounded) region, and since the intersection of
convex sets is a convex set, then every region (corre-
sponding to a leaf or nonleaf node) in the tree is convex.
Each leaf node corresponds to a cell of the partitioning,
while each internal node corresponds to a partitioned re-
gion that is the union of the cells at its leaf nodes.

For example, Fig. 1 shows a BSP tree-induced parti-
tioning of the plane and Fig. 2 shows the corresponding
binary tree. The root node represents the entire plane. A
binary partitioning of the plane is formed by the line la-
beled a resulting in a negative halfplane and a positive
halfplane. These two halfplanes are represented respec-
tively by the left and right children of the root. A binary
partitioning of each of these two halfplanes may then be
performed, as in Fig. 1, and so on recursively. When,
along any path of the tree, subdivision is terminated, the
leaf node will correspond to an unpartitioned region,
called a cell. As shown in the figure, the two cells A and
B define a concave object in the 2-D space. In other
words, Fig. 2 shows a BSP tree representation of this 2-D
object.

For those readers familiar with k-d trees [3], BSP trees
can be viewed as generalizing this data type by allowing
the partitioning lines to be arbitrarily oriented, rather
than restricting them to being orthogonal to a coordinate

FIG. 2. The BSP tree representation of the partitioning in Fig. 1.

axis (BSP trees were, however, developed indepen-
dently, beginning in 1969). They differ from quadtrees
and octrees (2” trees) both in the use of arbitrary lines
and in arity of the tree: a BSP tree’s data structure is a
binary tree, not a 2P-ary tree. The freedom to use any line
can lead to smaller and more exact representations, at the
cost of needing to perform a more expensive computation
to choose the lines.

An important consequence of supporting arbitrary ori-
entations is that any affine transformation (translation,
scaling, rotation, or shearing) can be applied to a BSP
tree by simply transforming the line equations (by a vec-
tor-matrix product). The orthogonality required of 27
trees prohibits rotations by any angle that is not a multi-
ple of 90° without reconstructing the tree. And for 27
trees, the restriction to subdividing a region into equal
parts also necessitates for all translations and most scal-
ings that a new tree be constructed. Consider a quadtree
representation of an image in which one quadrant is black
and the remainder are white, which is a tree composed of
five nodes. Translation by a distance of 1 pixel causes a
new tree to be generated whose size is on the order of the
number of pixels required to represent the boundary of
the square.

These difficulties with affine transformations arise
from the fact that 2” trees are based upon representing a
discrete plane (defined on a regular lattice), which was
originally motivated by discrete image representation/
generation. In contrast, BSP trees were developed ex-
plicitly in the context of continuous space and so the ease
with which they admit affine transformations arises im-
mediately from this fact.

The principal application of BSP trees has been for
representing polytopes, the dimension-independent en-
tity of which polyhedra and polygons are the 3-D and 2-D
instances, respectively. If each cell of the BSP tree is
classified as either *‘in”’ the set or “‘out’” of the set, then
the union of the in-cells determines the polytope (since all
regions are formally considered to be open sets, a closure
must be taken after the union).

More generally, each region of the tree may have an
arbitrary set of attributes associated with it, or equiva-
lently, a single aggregate attribute. The membership at-
tribute required for polytopes is the simplest example of
this: a constant boolean-valued function indicating in or
out. However, for representing images, an intensity or
color attribute is needed and possibly a transparency/
opacity attribute to be used for compositing.

Therefore, the BSP tree partitioning of the 2-D space
can be used to represent a piecewise continuous function
whose domain is the entire plane. All discontinuities in
this function are restricted to lie on the partitioning lines,
a condition met during tree construction. For example, in
the case of a polygon, all of the edges of the polygon must
lie on the partitioning lines, since these edges are exactly
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the points of discontinuity. Thus the BSP tree structure
provides the discontinuous part of the function, so to
speak, and pieces together the various continuous func-
tions, each restricted to certain cells of the tree. The
value of the piecewise function at a single point p (located
within a cell C) can be obtained by evaluating the corre-
sponding continuous function (defined over the cell C)
at p.

It is important to note that all the 2-D space ideas pre-
sented above can be easily extended to higher dimension
spaces. For example, the BSP tree representation of a 3-
D space can be achieved by using planes for the recursive
partitioning.

Besides affine transformations, most other work with
BSP trees has focused on the problem of rendering poly-
hedra and merging of BSP trees. In fact, BSP trees were
originally developed as a solution to the visible surface
problem: a view-dependent traversal of a tree generates a
visibility priority ordering of the polyhedral faces [14,
29]. They also can be used to provide ray tracing of poly-
hedra [30], clipping to a (nonconvex) window [31], com-
puting shadows [11], and global illumination of diffuse
surfaces [15]. It is also possible to convert between a BSP
tree representation and a boundary representation of
polyhedra (in both directions) and to perform set opera-
tions between the two types [43]. Algorithms for merging
two BSP trees (representing two objects) were also pre-
sented [32]. It was shown that BSP tree merging yields
boolean set operations between the two objects.

3. BINARY PARTITIONING OF IMAGES

Image segmentation using binary space partitioning
provides an efficient representation for image coding ap-
plications (see Section 7). Moreover, the arbitrarily ori-
ented partitioning lines and simple data structure (a bi-
nary tree) of the BSP representation make it very useful
for manipulation of images.

The BSP approach partitions the desired image, recur-
sively, by straight lines in a hierarchical manner. First, a
line is selected (based on an appropriate criterion) to par-
tition the whole image into two subimages. Using the
same criterion, two lines are selected to split the two
subimages resulting from the first partitioning. This pro-
cedure is repeated until a terminating criterion is
reached. The outcome of this recursive partitioning is a
set of (unpartitioned) convex regions which are referred
to as the cells of the segmented image. A good segmenta-
tion is obtained when the pixel values within each cell are
homogeneous. A cell is considered homogeneous if its
pixel intensities can be modeled using a smooth (or con-
tinuous) function. This desired feature (i.c., homoge-
neous cells) can serve as a terminating criterion.

As explained in the previous section, this recursive
partitioning generates a binary tree which is referred to as
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the binary space partitioning tree representation. In this
case, the nonleaf nodes of the BSP tree are associated
with the partitioning lines, and the leaves represent the
cells (unpartitioned regions) of the image.

It is important to note that every node in the tree (i.e.,
not only the leaves) represents a convex region of the
image. However, a convex region of a nonleaf node is
partitioned by the node’s line into two other convex re-
gions as explained above. In addition to a geometrical
description (defined by the partitioning lines of its ances-
tors), a convex region of the image’s BSP tree represen-
tation may have one or more attributes. An example of
such attributes is a zero-order (i.e., the mean value) or
higher-order polynomial model of the pixel intensities
within the region.

There are two important aspects of the BSP represen-
tation approach. The first aspect (and most critical one) is
the criterion used for selecting the partitioning lines. The
other significant aspect is the criterion used to terminate
the recursive partitioning and generate an unpartitioned
region (cell). We refer to the first aspect as the line-selec-
tion criterion, and to the second one as the terminating
criterion. The line-selection and terminating criteria de-
termine the efficiency and accuracy of the BSP tree rep-
resentation, respectively. These two criteria are not inde-
pendent of each other since a given line-selection
strategy influences the choice of the terminating criterion
as explained below.

3.1. Boundary-Based Partitioning

In this work, we based the partitioning on the image
boundary information, i.c., edges. A selected line, which
partitions a given region of the image, has to pass through
the strongest edge that lies within that region. The
strength of an edge is measured, in this case, by the num-
ber of connected, collinear boundary points lying on the
edge. Therefore, the first line selected to partition the
whole image passes through the largest number of collin-
ear connected edge points in the image. The same pro-
cess is applied to the two subimages resulting from parti-
tioning the image. In other words, for each subimage the
selected line has to pass through the largest number of
connected edge points that lie in that subimage. This
boundary-based, line-selection criterion provides very
good segmentation, and generates efficient representa-
tion as shown in the next section.

Our terminating criterion is based on the number of
edge points in a given region. In other words, if this num-
ber is lower than some threshold, then the recursive par-
titioning terminates and the region under consideration
becomes a cell of the BSP tree representation. The lower
the threshold value, the more accurate the representa-
tion. By using this terminating criterion, the resulting
cells have, in general, homogeneous pixels. It should be
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clear that the terminating criterion is influenced by the
boundary-based, line-selection strategy explained above.

If the pixels within each cell are estimated using a
smooth 2-D function (e.g., the average value of the pixel
intensities or a low-order polynomial), then this bound-
ary-based partitioning leads to a piecewise continuous
approximation of the image function. Moreover, each
smooth function, defined over a given cell, can serve as
an attribute of that cell. It is important to note that the
discontinuities of the piecewise continuous approxima-
tion lie on the selected partitioning lines, and these lines,
as explained before, pass through the image edges.

Other line-selection and terminating criteria can be
used to generate efficient BSP tree representations of im-
ages. For example, a straight line can be selected to parti-
tion a given region of the image if the line minimizes some
error function defined over that region. Based on this
error-minimization criterion, we are currently developing
a least-square-error method for constructing BSP trees.
In this paper, however, our work is based on boundary
information only.

3.2. Multiresolution-Based Partitioning

Depending on the criteria used to build a BSP tree of an
image, it is desirable that the resulting tree contains a
multiresolution description of that image. In a multireso-
lution description, the nodes close to the root of the tree
represent the coarse (low-resolution) information of the
image, whereas the nodes close to the leaves contain the
fine details (high-resolution information). We refer to a
BSP tree with such a description as a multiresolution
BSP tree. It is desirable to construct a multiresolution
BSP tree representation of a given image since traversing
the tree from top (the root node) to bottom (the leaves) is
equivalent to zooming at that image. However, in order
to guarantee that the recursive binary partitioning gener-
ates a multiresolution BSP tree, one needs to use a
multiresolution approach when constructing the desired
tree.

The multiresolution approach derives a pyramid of dif-
ferent resolution images from the original image [25].
This method is similar to the scale-space approach pro-
posed in [49] as well as the Laplacian pyramid scheme
[6]. The bottom of the multiresolution pyramid is the
original image, and the top is the most coarse image.
Therefore, by moving from the base to the top of the
pyramid the image representation becomes more coarse
(i.e., fine details are eliminated). Moreover, an image at a
given level of the pyramid contains the information repre-
sented by all images above that level. For example, the
original image contains the information represented by all
other images in the multiresolution pyramid.

When constructing a multiresolution BSP tree, one has
to start with the top of the pyramid. In other words, by
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applying the desired line-selection and terminating crite-
ria on the lowest resolution image, a BSP tree (which
represents the most coarse details of the original image)
is first generated. This coarse BSP tree is then used as an
initial guess to construct a finer tree from the next higher
resolution image in the pyramid.

When expanding a coarse tree into a finer tree, two
steps are needed. First, all nonleaf nodes of the coarse
tree are mapped into the same number of nonleaf nodes
in the finer tree. (This mapping requires, in general, some
focusing procedure as explained in Section 5.) Second,
using the higher resolution image, the coarse tree’s
leaves (cells) are expanded by new BSP subtrees. These
subtrees represent finer details of the original image. The
same procedure, i.€., expanding a coarse tree into a finer
tree, is repeated until one reaches the base (original im-
age) of the pyramid.

It is important to note that the multiresolution-based
BSP tree generation method is independent of the partic-
ular approach used to construct the BSP tree. In this
work, for example, we applied the multiresolution
method to our boundary-based BSP tree generation
scheme. In other words, we first construct a coarse tree
using the boundary information of the lowest resolution
image in the pyramid. This coarse tree is then used as an
initial guess to construct a finer tree from a higher resolu-
tion image. In this case, the cells of the coarse tree are
expanded into BSP subtrees using the boundary informa-
tion of the higher resolution image.

In addition to generating a multiresolution BSP repre-
sentation, this hierarchical approach provides a signifi-
cant reduction in the computational expense. This is be-
cause the pyramidal method takes advantage of
computations that take place at a coarse level of the pyra-
mid when performing similar computations at a finer res-
olution level. Moreover, using the multiresolution ap-
proach gives better segmentation as shown in Section 5.

4, A HOUGH TRANSFORM-BASED METHOD FOR BSP
TREE GENERATION

As explained above, our proposed BSP tree approach
partitions the domain of the desired image by straight
lines passing through the image boundaries. This is an
easy task if the image contains a few simple objects of
known shapes and sizes. On the other hand, partitioning
an image that consists of several objects of unknown
shapes and sizes may require the segmentation of the
various objects in the scene. Without performing the diffi-
cult segmentation process, one way to solve the problem
is to base the partitioning on the image contour informa-
tion. Two steps will be needed for generating such a BSP
tree representation (see Fig. 3): (1) extract the boundary
locations of each object in the image, and (2) determine
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FIG. 3. Stages of a boundary-based BSP tree generation method.

the linear characteristics of these boundaries, in order to
match them with a minimum set of straight lines.

Each straight line, which is represented by a nonleaf
node of the BSP tree, partitions a convex region of the
original image. The partitioning line of a given region has
to match the largest set of collinear edge points in that
region. In addition, it 18 desirable to include a connectiv-
ity weighting of these edge points [471. We emphasize the
notion of connectivity since the human visual system i8
panieularly sensitive to linear segments of connected
points [17]. Edge points that Jie on a straight line and yet
do not belong to one connected edge will be referred to as
uncorrelated collinear edges.

As a consequence, the straight lines associated with
high-level nodes (close to the root) in the BSP tree should
(in general) fit the boundaries of large objects whereas
low-level nodes (close to the leaves) represent fine details
and small objects. This defines a natural hierarchical de-
scription of the image. However, in order to guarantee
that the resulting tree is a multiresolution BSP tree (as
defined in Section 3.2), one needs 1o USe the multiresolu-
tion approach which is explained in detail in Section 3.
It is clear that the boundary points of the various ob-
jects in the image can be located by an edge detection
process. The performance of the edge extraction can sig-
nificantly influence the tree structure. After a reliable
edge detection process, straight lines are built on collin-
ear edge segments. The Hough transform is a very useful
tool to extract straight lines and other geometrieal fea-
tures in edge images [16, 13].

Our BSP tree generation method starts by applying the
Hough transform (HT) on all edge points in the image,
and selects the HT cell! with the maximum number of
votes (corresponding t0 the line that passes through the
maximum number of edge points) to partition the image.
The selected line partitions the image into two subim-
ages. The same process is repeated on each subimage. In
other words, the HT of one of the two subimages is com-
puted, and a search for the cell with the maximum num-
b vt s prormed Mo e 0 e g
is done to the othere Si'eaed Sl*l[‘blmage' The same thing
until a termination s;it o i repeated
ould be s erion 18 reached. This criterion

one or both of the following: (1) the area of the

i The HT cell should not be confused (and has no relation) with the
BSP tree cell. The HT cell is defined in Section 4.2.
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region to be partitioned is smaller than 2 certain thresh-
old, and (2) the number of boundary points within the
region is lower than some other threshold. These thresh-
olds determine the degree of accuracy of the representa-
tion. The lower the threshold values, the larger the num-
ber of nodes in the tree and the more accurate the image
description.

It is important to note that a line hy (associated with a
node p and a convex region R,) classifies each point X €
R, into On€ of the following three convex sets,

h;:{xERP:x-ap>pP}

h, :{xERF:x-apépu}
sh, = hpﬂRP—r‘{xER”:x'a“:pp},
where a8, 18 2 unit vector normal to Ay and p, is the

normal distance between h, and the origin. Here h, and
hy represent the positive and negative subregions of Ry,
and are represented by the right and left children of w,
respectively- sh, represents @ subline (of 71,) that lies in
R, . After selecting hy, as the partitioning line of Ry, it s
crucial to climinate all edge points esh, (i.e. that lie on
the line) and process just those points that belong to the
subregions 1y and hy. Otherwise, these points (that ar®
Esh,) may contribute to one Of both of the regions, and
subsequently an infinite recursion may occur.

To summarize, W€ propose @ BSP tree generation
method based on the following: (1) perform an edge de-
{ection process; (2) compute 2 series of Hough trans-
forms, one for each nonleaf node in the tree; and (3)
select each line as the peak of the corresponding Hough
transform. The subsections below describe in detail each
one of these steps.

4.1. The Edge Detection Process

As mentioned above. the input to this Hough trans-
form-based BSP tree generation method is an edge image
which can be represented as a binary function E(x, ¥)-
The structure of the resulting tree and the set of straight
lines selected to partition the original image are strongly
dependent on E(x, ). E(x, y) can be obtained from the
original image through a numerical differentiation pro-
cess followed by a simple thresholding strategy. How-
ever, it is well known that differentiation amplifies high-
frequency noise. Edge detection is 2 mildly ill-posed
problem which can be transformed into a well-posed

proolem by eonvolving the original image (before differ-
entiation) \&zlth a smoothing filter f(x, o) whose Fourier
transform F(w, o) satisfies the conditions [44, 28]

a—=0

(UF((,U, U') e LZ!




localization of the original edges. In this section, we Jimit
oursel_ves to a Gaussian function with small o as g predif-

4.2, The Hough T, ransform

voting process, where (x,, y,) votes for all lines passing
through it. These lines are represented by two parame-
ters in the Hough space (also known as the parameter
space). Here we use the (8, p) parameterization to repre-
sent straight lines in the Hough space. ¢ s the direction
(with respect to the x axis) of the Vector n normal to the

p = x cos(f) + y sin(g). (4.2.1)

The HT at a point (6, p) in the Hough space can be

expressed as
ht(8, p) = E Z 8(p — xcos g — Y sin 6)E(x, y),
(4.2.2)

RADHA ET AL,

wher-_e E(x, y)is a 2-D binary function Tepresenting the
edge !mage, and §(x) = | forx =0 ang Zero otherwise, In
Hough space is divided into a finjte number
of Ct?ﬂsz Organized as ap accumulation array, where each

[19].
Improvements have been Suggested to thig simple ap-

I IS sensitive to background

noise and textyre 1n the Image [5, 47]. Here, we use two

Ye), ideally, one needs to Compute the HT of (xe, y.) only
for 6 = ¢, j

Limiting the Hough transform

mulation [S]. The improvement for incorporating gradient
direction information is shown in Section 4.4,

Another approach (which can improve the perfor-
mance of the standard HT) is to associate the HT vote

2 As noted before, the HT cells should not be confused with the BSP
tree representation cells.
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y Image Space

FIG. 4.

that a given edge point (x., y.) casts in the Hough space
with an edge segment connectivity measure [47]. In this
work, we introduce a modified HT method that weights
the edge point votes using a line integral procedure. This
new HT approach is explained in detail in the next sub-
section.

4.3.

Real-life images may contain a large number of uncor-
related collinear edge points that do not belong to the
same edge (object boundary). Examples of this scenario
are shown in Fig. 5. By using the standard HT, these
uncorrelated collinear points will cause the occurrence of
false peaks in the Hough space [47]. One way to solve
this problem is to associate a weight for each vote that an
edge point casts (in the parameter space) for a given cell
(6, p). If the edge point (x,, y.) is part of an edge segment
e that lies on the line (8, p), then the vote of (x,, y.) for (6,
p) should weight more heavily than other edge points
which also lie on (6, p) but do not belong to the edge
segment e. Here we are assuming that e is either the only

The Modified Hough Transform

FIG. 5. Examples of uncorrelated, collinear boundary points.
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P Hough Space

p = 2sin®

]

\ p = cosB +sin®

p = 2cos@

An example of the Hough transform of three edge points.

or most significant edge segment that lies on the line
0, p).

To quantify this concept, we define the variable v.(6, p)
as the line integral [along the line (8, p)] of the product
E(x, y) - w(lx — x|, |y — ye|), where E(x, y) is the edge
image, and w(r, s) is a 2-D nonnegative function that is
symmetric and monotonically decreasing in all directions
away from the origin. Therefore, instead of contributing
only one vote to At(6, p) under the standard HT, an edge
point (x., y.) will increase ht(8, p) by v.(6, p) under this
technique:

ht (0, p) = 8(p — x, cos 8 — y. sin )
=2 }Z : Y @.3.1)

X E(xe, ye)ve(8, p)-

The line integration as performed is a natural way of
measuring connectivity along the edge being considered.
We chose w(r, s) to be a Gaussian-shaped function with a
standard deviation o;. For a given value of oy, the line
integral is carried over a finite length [ = 2d, where [ is
proportional to o;. The integral along the line (6, p) can
be expressed using the following parametric forms for x
and y, assuming 7/4 =< |6| = =/2:

x(H) =1+ x,

(1)

—d sin(@) = t = d sin(#)
—d sin(@) =t = d sin(f)
—[x(t) — x.] cotan(f) + y..

—t cotan(@) + v,

Now v.(8, p) can be expressed as

d sin(@)
v.(0, p) = Vcotan?(9) + 1 I

—d sin(@)

x E[x(1), y(;)]g—i(x(ﬂ—xr}!*(.\'(r)--yer}.’la? dr. (4.3.2)

For other values of 6, the x coordinate is expressed as a
function of y. This is done to avoid aliasing when imple-
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FIG. 6. An example of traversing a tree.

menting the line integration on a discrete sampling lat-
tice. In such a case, the following equations were used to
compute v.(8, p):
yo) =1+ y. —d cos(8) =t = d cos(8)
x(t) = —ttan(d) + x. —d cos(d) =t = d cos(9)

—[y@) - y.] tan(8) + x,

tanz(ﬁ) n Ifdcosw}

—d cos(d)

ve(6, p)
X E[x(1), y(t)]e l«® x P+ 0-y 20} gy (4.3.3)

The above integrations were implemented by increment-
ing ¢ by 1 within the specified ranges. The performance of
such technique is explicitly described in Section 4.4.

4.4, Segmentation Performance of the
HT-Based Method

Similar to other tree-like data structures, when build-
ing a BSP tree one has to follow a systematic tree tra-
versal approach. The preorder, inorder, and postorder
algorithms are commonly used for traversing trees. (See
[2] for the definitions of these traversal methods.) If Tis a
tree with root r and subtrees Ty, T3, . . . , T} (for binary
trees, k = 2), then a useful way to visualize the different
traversal schemes is to draw a path around the tree T
starting from the root node and staying as close as possi-
ble to the nodes of the trees as shown in Fig. 6. In our
case we are attempting to generate a tree, by first search-
ing for the “‘best’ line that can be used to partition the
image into two subimages, and associating this line with
the root node of our BSP tree. Since the same process
(searching for the best line) will be repeated on one of the
two subimages after generating the root node, we con-
struct our desired BSP tree in a preorder manner.

This preorder traversal algorithm was implemented in
the C language using the HT-based method (described
above) to select the partitioning lines, and to construct
the BSP tree representation of the desired image. The
algorithm was tested on the 256 X 256 image shown in
Fig. 7. This image was chosen due to its complexity. As
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seen from the figure, the image contains a fair amount of
texture (e.g., the hat surface and the flowers) in addition
to very low-contrast edges (the right side of the lady’s
face). Moreover, it represents a human face for which
distortion is particularly noticeable.

We first applied the algorithm on the edge image of Fig.
8a. The edge image was obtained (without any filtering)
using a nonlinear edge detector proposed in [36] in com-
bination with a thinning process. In this case we com-
puted the HT using the standard method, i.e., consider-
ing all 6 values between zero and 180°. Therefore, under
this scenario we did not use any gradient direction or
edge connectivity information for the HT. Figure 8b
shows the output which is a labeled, segmented image,
where the darkest and brightest regions represent the
right-most and left-most leaf nodes in the resulting BSP
tree.

It is clear that this BSP tree does not represent the
original image, except for some of the face features which
were vaguely reproduced. This poor performance results
from the occurrence of a large number of false peaks in
the Hough space. These false peaks are caused by the
large number of uncorrelated collinear texture points.

Figure 9 shows three edge images obtained with the
gradient edge detector described in Section 4.1. These
edge images were derived from a Gaussian-filtered ver-
sion of the original image. Figures 9a and 9b show the
resulting edges when only a low threshold T; or a high
threshold 7}, is used, respectively. Figure 9c shows the
edges obtained when both 7; and 7}, are applied using the
thresholding with the hysteresis algorithm. It is clear that
significant improvements can be achieved by using the
hysteresis approach versus a simple thresholding strat-
egy. All the simulation results discussed below were ob-
tained using the edge image of Fig. 9¢ as an input to our
BSP tree construction algorithm.

Figure 10 shows the results of applying the algorithm
and using the gradient direction information when com-
puting the HT. The labeled image (which visualizes our

FIG. 7. The 256 x 256 original image with 8 bits per pixel.




BSP TREE REPRESENTATION OF IMAGES 209

FIG. 8. (a) Edges of the original image of Fig. 7. The edges were detected using a robust edge detector and without filtering. (b) A labeled image
illustrating the BSP tree representation of the original image. This representation was generated using the standard Hough transform and without
any gradient direction information.

FIG. 9. (a) Edges of the original image using gradient edge detector and a simple thresholding strategy with a low threshold value. (b) Edges of
the original image using gradient edge detector and a simple thresholding strategy with a high threshold value. (c) Edges of the original image using
gradient edge detector and a hysteresis thresholding strategy with both low and high thresholds.
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FIG. 10. BSP tree representation images resulting from applying the
HT-based method on the original image of Fig. 7, and using gradient
direction information when computing the Hough transform. (a) A la-
beled image showing the partitioning lines and the convex regions re-
sulting from the binary partitioning. (b) A mean-value image with the
partitioning lines, where each region is filled with its pixel intensities’
mean. (c) A mean-value image without the partitioning lines.

BSP tree representation of the original image) of Fig. 10a
illustrates a significant improvement when compared
with the image of Fig. 8b. This improvement is mainly
due to the usage of gradient direction information in the

FIG. 11. BSP tree representation images resulting from applying the
HT-based method on the original image of Fig. 7, and using the modified
Hough transform. In the modified HT both gradient direction informa-
tion and line integration are used. (a) A labeled image showing the
partitioning lines and the convex regions resulting from the binary parti-
tioning. (b) A mean-value image with the partitioning lines, where each
region is filled with its pixel intensities” mean. (c) A mean-value image
without the partitioning lines.

HT. Figures 10b and 10c show the images resulting from
filling the leaf node regions with the mean value of the
corresponding regions of the original image. Figure 10b
also shows the BSP tree lines used to partition the image.
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Although the gradient direction information has helped
in eliminating a large number of false peaks due to the
uncorrelated collinear edge points, more improvements
can be achieved when applying the line integration pro-
cess (in combination with the gradient direction informa-
tion) as shown in Fig. 11. The most obvious example of
these improvements is the root node line. From the edge
image of Fig. 9¢, one would expect the straight line corre-
sponding to the hat edge to be the first partitioning line.
(The first selected line partitions the whole image into
two segments and represents the root node of the binary
tree.) This desired result is obtained in Fig. 11 (due to line
integration) but not in Fig. 10. For the line integrals of
egs. (4.3.2) and (4.3.3), we have used o; = 1.

To further improve the quality of our BSP tree repre-
sentation, we have used within our HT-based algorithm a
parent—child minimum distance constraint. Under this
approach the line (6,, p,) associated with a parent node
u, has to be a minimum distance (in the Hough space)
from its child line (., p.). This minimum distance re-
quirement can be expressed as

6, — 8.l = 64 or |p, — pc| > pa,

where 6, and py are the desired minimum distances in the
6 and p directions, respectively. The results of using this
strategy are shown in Fig. 12. It is clear that the minimum
distance constraint has improved the images by guiding
the segmentation process in areas with high texture den-
sity (e.g., the flowers’ region).

Figure 13 shows mean value images resulting from us-
ing this strategy for the two cases (1) 6, > py (Figs. 13a
and 13b) and (2) 6; < p4. Both 6, and p, are measured in
terms of the number of HT cells in the 6 and p directions,
respectively. In Fig. 12, we set 6; = pq = 10, for Figs. 13a
and 13b, 8, = 2pg = 20, and for Figs. 13c and 13d, ps =
264 = 20.

For each of the two cases we also show the results of
performing the line integration process across and within
the regions. Selecting a large minimum distance in the p
direction (see Fig. 13d) has helped in partitioning some of
the large polygons appearing as artifacts across the right
side of the face, at the expense of poorer segmentation of
the finer objects (e.g., the flower) in the image. On the
other hand, performing the line integration across the
regions provided a better segmentation of the finer ob-
jects (e.g., the flower and the lady’s nose) but at the
expense of introducing some artifacts on the larger object
(the right side of the face). Overall, the segmentation of
Fig. 12 provided the best results (see, for example, the
preserving of the flower in the hat), as it uses good
threshold values for 6, and p,.

The accuracy of the HT-based BSP tree representation
is a function of the amount of boundary information used
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FIG. 12. BSP tree representation images resulting from applying the
HT-based method on the original image of Fig. 7, and using the modified
Hough transform and parent—child minimum distance strategy. (a) A
labeled image showing the partitioning lines and the convex regions
resulting from the binary partitioning. (b) A mean-value image with the
partitioning lines, where each region is filled with its pixel intensities’
mean. (¢) A mean-value image without the partitioning lines.

when constructing the tree. Therefore, a much more de-
tailed representation can be achieved by increasing the
number of edge points detected from the desired image.
To accomplish that, we first derived an enhanced version
(Fig. 14a) of the image in Fig. 7 by simply increasing the
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FIG. 13. Mean-value, BSP tree images resulting from applying the HT-based method on the original image of Fig. 7, and using the modified
Hough transform and parent—child minimum distance strategy: (a) when performing line integration across the regions, and for p;, = 10 and 6, = 20:
(b) when performing line integration within the regions, and for p, = 10 and 6, = 20; (c) when performing line integration across the regions, and for
pa = 20 and 6, = 10; (d) when performing line integration within the regions, and for pqs = 20 and 6, = 10,

dynamic range of the gray levels in the image. By apply-
ing the HT-based method, one can generate the images
shown in Figs. 14b-14d. It is clear from these figures that

a much finer representation can be achieved by simply’

increasing the amount of boundary information.

5. THE MULTIRESOLUTION APPROACH

The HT-based method described in Section 4 is compu-
tationally intensive. A hierarchical implementation of the
Hough transform is one solution to this problem as sug-
gested in [47]. Another solution is to use a multiresolu-
tion method when building the desired BSP tree.

In this section, we describe a multiresolution-based,
hierarchical method for generating the BSP tree from
several scale-space images derived from an original im-
age. As explained below, the multiresolution approach
takes advantage of computations that take place at a
coarse resolution level when performing similar compu-
tations at a finer (higher) resolution level. This new ap-
proach includes the introduction of a line focusing algo-
rithm used to derive a tree representing an image (at a

given resolution) from another tree representing a
coarser image.

This strategy can provide a significant reduction in the
computational expense, as explained below. In addition
to the computational advantage, the hierarchical ap-
proach guarantees that the resulting tree is a multiresolu-
tion BSP tree. As explained in Section 2, traversing a
multiresolution tree from top to bottom is equivalent to
zooming at the image. Moreover, better segmentation is
achieved using a hierarchical method.

The multiresolution approach derives a hierarchy (pyr-
amid) of signals from the original signal [25, 6, 46] as
shown in Fig. 15. We assign negative numbers to the
coarse resolution levels since the original (highest resolu-
tion) signal starts at level 0.

A derived signal at a given resolution level L in the
hierarchy contains the (original) signal’s information of
that level L and all other resolutions lower (or coarser)
than L. For example, the image at level —1 in Fig. 15
contains the information of levels —1, —2, and —3. How-
ever, it does not contain the higher resolution (level 0)
information. One can (for example) detect the boundaries
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FIG. 14. Accurate BSP tree segmentation using more boundary information. (a) Enhanced version of the original image of Fig. 7. (b, ¢, d) BSP
tree images resulling from applying the HT-based method on the image of (a), and using the modified Hough transform and parent—child minimum
distance strategy. (b) A labeled image showing the partitioning lines and the convex regions resulting from the binary partitioning. (c) A mean-value
image with the partitioning lines, where each region is filled with its pixel intensities’ mean. (d) A mean-value image without the partitioning lines.

of large objects (coarse details) found in a scene by per-
forming an edge detection process on a low-resolution
image of that scene. The exact location of these coarse
edges can then be detected using a high-resolution image
of the scene. While this same low-resolution boundary
information can also be detected from a high-resolution
image of the same scene, performing the computation on
the coarse image (in addition to refining the edge loca-
tions using the high-resolution image) can be significantly
less intensive than performing the same computation di-
rectly on the high-resolution image.

In order to (1) reduce the computations required when
generating a BSP tree representation of an image and (2)
generate a multiresolution BSP tree, we construct the
desired tree using this multiresolution approach. We first
derive a hierarchy of images from the original image.
Then, we build the BSP tree of the lowest (most coarse)
resolution image in the pyramid using the HT-based
method described in Section 4. We use this low-resolu-
tion tree as an initial guess to build another tree repre-
senting the next higher resolution image in the hierarchy.
The same process (i.c., using a BSP tree representing an
image at a given level of the pyramid as an initial guess to
construct another tree representing the next higher reso-
lution image in the pyramid) is repeated until we generate

the BSP tree that represents the highest resolution (origi-
nal) image. Below, we describe in detail our multiresolu-
tion approach for deriving a high-resolution-image BSP
tree from another tree that represents a lower resolution
image. Without loss of generality, we assume that the
high-resolution image is the original (level 0) image. This
method can be applied between any two successive levels
of the pyramid.

5.1. From a Coarse Tree to a Finer Tree

Let I, be the original image, and E, be the edge image
of Iy. From Iy, we derive the image I, by (1) convolving I,
with a 2-D Gaussian filter g, (x, y) of variance o2,, and
(2) subsampling the filtered image using a decimation fac-
tor M = 27" in both the x and the y directions, where m <
01is the resolution level. An edge image E,, is then derived
from I,, using a maximum-gradient edge detection pro-
cess described in Section 4.1. By employing the HT-
based method, a BSP tree T, is then generated from the
edge image E,. [Every leaf node in T, represents an
unpartitioned, convex region of I,,. Every nonleaf node
(., Which represents a convex region R,, in [, is associ-
ated with a line (6,,, p,,) that partitions the region R,,.]

In Section 4, we derived a BSP tree T; (which repre-
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FIG. 15.

A multiresolution pyramid.

sents the original image I) from the edge image E, only.
It should be noted that E; contains the boundary informa-
tion of I, at all resolution levels L = 0.® The previous
approach, however, is very computationally intensive.
Here, the objective is to reduce the computational burden
of the Hough transform-based method by deriving a BSP
tree T, (which represents the original image I,) from:

(1) the tree T, which represents the image I,,, and
contains the boundary information of the original image I,
at all resolution levels L = m;

(2) the boundary information of the resolution levels
m < L = 0 contained within the edge image FEy.

It is important to note that both T, and T, represent Iy at
all resolution levels L = 0. In general, however, Ty # Ty.

We derive T, in two stages: (1) a binary tree T,y is
derived using a preorder tree traversal of T,, and a line
focusing algorithm (explained below), and (2) T is then
generated by replacing the leaf nodes of T,,0 with new
BSP subtrees which represent the boundary information
at the resolutions m < L = 0.

It should be clear that T, has the same shape, struc-
ture, and number of nodes as T,,. Moreover, and under
ideal conditions, a line A,, associated with a node u,, in T,,
will have the same parametric representation (6,,, pn.) as
the line Ay associated with the corresponding node o
(which is derived from the node w,). Due to filtering,
however, the edges of I, shift from their original posi-
tions. It was shown [4] that this shift is proportional to
the scale-space parameter o,,. We used this result to de-
sign a line focusing algorithm.

5.2. Line Focusing Algorithm

Let hg = (6, po) be a straight line that: (1) partitions the
region R, of the original image Iy, and (2) lies on several

3 Before proceeding, it is important to note that both m and L denote
the resolution levels of the pyramid. However, for a given level m we
use L as a variable representing all possible (including m) resolution
levels.
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edge points from Ey. Let pp = (xo, Yo) be an edge point on
hy as shown in Fig. 16. Filtering Iy by a 1-D Gaussian
kernel in the x direction causes p, to shift by a distance
|A4| = com, where ¢ is some positive constant and o, is
the standard deviation of the Gaussian filter. Filtering the
resultant image by the same Gaussian kernel in the y
direction causes po to shift (further) a distance |A,| =
co,,. Under worst case conditions, either A, = A, =
+copmor Ay = A, = —co,. Therefore, filtering I, by a 2-D
Gaussian kernel causes p to shift by a distance |A,,| =
\V2ca,,. We denote by p,,- and p,,- the points (xg + cOm,
yo + cop) and (xo — €O, Yo — COm), respectively (see
Fig. 16).

If every point py on hy moves to a new point p,- [or
pm-], then it is trivial to show that these displaced points
form a new line A,;, = (8, pm+), [OT Ay, where 8, = 6
[or 6,.- = 8] and p,,- = po + €O (cOs By + sin Gy) [OT p-
= py — C’O'm(COS Bg + sin 9())].

Therefore, under a worst case scenario, the line h,, (at
resolution m) corresponding to the line A, (at the higher
resolution 0) has to be within the following region (the
shaded strip in Fig. 16):

Sk, = Ro N Hy- N Hy., (5.2.1)
where H,. and H,. are the positive and negative half-
planes of the lines A, and h,,, respectively.

Similarly, one can show that given a line A, = (0, pm)
which partitions a region R, of Iy, its corresponding line
hy has to be within the region

Si = Ro N Hy; N H,, (5.2.2)

where h(; = (6;,; s Pm + Apmax), h(; = (ems Pm — Apmax)s and
Apmax = cop(cos B, + sin 6,,). (5.2.3)
Therefore, by performing our modified Hough transform

(as explained in Section 4.2) on all edge points within Sy,
we can detect the parametric representation (6, po) of the

FIG. 16. The line focusing algorithm.
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line ho- In this case (fo, po) are the coordinates of the

It should be clear that the smaller Apmax is, the less
computation is required to detect the line ho. Conse-
quently, given hp = B> Pm) and ¢, one can reduce Apmax
by selecting smaller values for o, . HOwWeVer, using small
o, increases the amount of aliasing energy in the deci-
mated image Im- This represents 2 trade-off between the
amount of: 1 computation required to detect ho., and (2)
aliasing energy one can tolerate in the decimated image.

Below we derive an expression for Apmax i ETMS of a
measure (Fa) of the aliasing energy of the 2-D Gaussian
filter. Using this expression, one can quantify the rela-
tionship between the (minimum) desired search area of
S, and the amount of aliasing.

5.2.1. Line focusing and aliasing. To avoid aliasing
when decimating & 1-D. discrete-time sequence by a fac-
tor M, the sequence has to be convolved (first) by @ filter
whose transfer function’s cutoff frequency Q, = wlM
[12]. For 2.D signals the same principle is applied to the
two orthogonal frequency axes.

The 2-D Gaussian function

1 L
- — x4y P20
20X ¥) = T (gl (5.2.4)
has a transfer function
G, (x,¥) = @i, (5.2.9)

where 0, = 1om-
The Fourier transform of the Gaussian filter is & Gaus-
sian-shaped function with infinite tails in both the Q, and
the Q, directions. Therefore, using the Gaussian kernel
as a prcdccimation filter makes aliasing inevitable. What
can be done, however, is to reduce aliasing by using small
(large) values of oo (Tm)-

For a given (or desired) energy w under G, (x, ¥), W€
define the Gaussian cutoff frequency {lgc aS the radial
frequency {1 satisfying the condition

1 2 (flec 2ym 2
W:WJ j (el dD,(Q,d0). (520

0 0

where O, = VQ2 + Q5 and Qg = arctan(€,/ Q)
It can be shown that

2
Tao 1 a2
— — 1 — e—ﬂ,ruo'm .
4ar ( )

(5.2.7)

The total energy We under - (@+0))20% can be expressed
as Wg = aol4. Therefore, by dividing W by Wg, we get

_"_‘_J. = - e—nicr:ai)_

We (5.2.8)
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Solving for Qg

f We
Qg = 0w N0 (Wc - W). (5.2.9)
Here we define the aliasing factor F, as
_ We — w
Fo="Wo (5.2.10)

It should be clear that Fg 18 @ measure of the aliasing
energy which is due to the infinite tails of the Gaussian-

2

shaped transfer function o~ (@i+0D20% Using Fa, Qg can
be expressed as

—
(:) (5.2.11)

Qg" = 0w \'Ilh.l‘

Applying the condition ¢ = /M to Qg one gets

- 5.2.12
7o = 3 Vin(1/Fa) ¢.2.12)
or
——
1
onz 2\l (+)- (5.2.13)

Using the minimum (permissible) value of o, for a given
aliasing factor F,, we can write Apmax as

Apmax = (cMIm) VIn(1/Fg) (cos(Bm) T sin(fm))-
(5.2.14)

Therefore, in order to find ho = (89, po) it 18 sufficient to
perform the Hough transform on every edge point (xe. Ve)
within the convex region R of Eo that satisfies the condi-
tion
Pm Apmax =p=Pm + Apmax- (5215}

where p = Xe cos(B,) t Ye sin(fm)-

As will be shown in Section 5.3, the algorithm provides
very satisfactory results when tested on real images.

5.3. The Multiresolution Approach Simulation Results

The multiresolution approach described above was
tested on the 256 X 256, gray-scale image shown in Fig.
14a. This image represents, in our case, the resolution
level m = 0. Two scale-space images (I- and I-p) at
resolutions m = -1 (M =2) and m = —2 (M = 4) were
derived using om =~ 1. Three edge images E, (Fig. 178),
E_, (Fig. 17d), and E_» (Fig. 17b) were derived from Io,
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1-;1 , and [ -2,
edge detector.,

In this section, we show the results ag mean-value im-
ages, where each unpartitioned region (which corre-
sponds to a leaf node of the tree) has been filled with the

respectively, using a maximum-gradient

Image E_, in Fig. 17b (of size 64 x 64). The resulting BSP
tree image is shown in Fig. 17a. The corresponding tree
T_; and the edge image F_ 1 Were used to derive the BSP
tree image shown in Fig. 17¢. By traversing 7_, and using

resolution m = —1. Figure 17e shows the result of ex-
panding the leaves of T using the bou ndary information
of resolution n; = =1 found in the edge image E_.
Using the BSP tree T_; (whose image is shown in Fig.
17e), we repeat the same process: (1) derive the BSP tree
image of Fig. 17f which shows the details of resolution s
= —1, and (2) expand the leaves of T_, with new subtrees
(representing the details at resolution m = 0) using
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boundary information Wwithin E, (Fig. 17g). The result of
step (2) is shown in Fig. 17h,

By applying the HT-based method on E, directly, one
gets the BSP tree image shown in Fig. 14d. By comparing
this image with the BSP tree image of Fig. 17h, we can

6. COMPUTATIONAL ASPECTS

So far we have presented a boundary-based (or HT-
based) method for constructing a BSP tree representation
of an arbitrary image /,. The method uses (as an input) an
edge image Ey of the desired original image J,. We also
described a multiresolution approach for constructing a
multiresolution BSp tree representation of Iy using a pyr-
amid of images (and their corresponding edge images).
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As mentioned above, one of the advantages of this
multiresolution approach is the reduction in the computa-
tional expense of the HT-based method.

In this section we derive two computational complex-
ity expressions: (1) for constructing a BSP tree Ty using
the HT-based method (i.e., building Ty directly from Ey),
and (2) for building a BSP tree T, when applying the
multiresolution approach at one level of the hierarchical
pyramid [i.e., building T, from (1) a low-resolution tree
T,,, and (2) the high-resolution edge image Eo]. On the
basis of these two expressions, we quantify the computa-
tional advantage of applying the multiresolution ap-
proach. First we develop a model for the computational
complexity of building a (generic) binary tree T from an
edge image E.

The time required to build T from E depends mainly on
(1) the number of edge points Pg in E, and (2) the topol-
ogy (i.e., the tree structure) of T. Due to the large number
of possible topologies of a binary tree T with n (>1)
nodes, here we only consider two extreme cases of bi-
nary tree structures: (a) the complete (fully symmetric)
and (b) fully asymmetric topologies. Figure 18 shows the
fully symmetric and asymmetric binary trees for n = 15.
These two cases, (a) and (b), represent the lower and
upper bounds for the computational complexity of build-
ing T, respectively. We measure the computational com-
plexity of both cases as the fotal number of edge points
P needed to be processed in order to build the desired
tree T.

Here we use N to denote the number of partitioning
lines, and p as the average number of edge pixels that lie
on a line h (detected from E). Therefore, P = Np.

A complete binary tree T. of depth d has all of its
leaves at level d [42]. The total number of nonleaf nodes

O Non-leaf node

Leaf node

Asymmetric Complete

FIG. 18. Asymmetric and complete binary trees.

217

in T, is 2¢ — 1. Therefore, the number of straight lines N
=24 — 1, or d = log; (N + 1). After detecting the root-
node line (which requires processing all Px edge points in
E), one has to process (on the average) Pg — p edge
points to detect the two lines (at level 1 of T) that are
associated with the right and left children of the root
node. Similarly, in order to detect the 2/ partitioning lines
represented by the nodes at level j of the complete tree
T., one has to process P — S 2ip=Pg— (2= p
edge points.

Therefore, the computational complexity of generating
T. can be expressed as

d—1
Pr= 2, [Pp— 2/ = Dpl. (6.1)
J=0
This expression can be reduced to
Pr=pl(N + 1) loga(N + 1) — N1]. (6.2)

A fully asymmmetric binary tree of depth d has d (=N)
nonleaf nodes. There is one nonleaf node for each level
between zero (the root node) and level d — 1. The nonleaf
node at level d — | has two leaf children, whereas each of
the remaining d — 1 nonleaf nodes has one leaf child and
one nonleaf child. In order to detect the straight line asso-
ciated with the nonleaf node at level j of a fully asymmet-
ric binary tree T,, it is required (on the average) to pro-
cess Pg — jp edge points. Therefore, the computational
complexity of generating T, can be expressed as

d=1
Pr= 2 [Pg - jpl. (6.3)
i=0
This expression can be reduced to
Pr = p[N(N + 1)/2]. (6.4)

Using these results, one can estimate the time #r required
to build a BSP tree T of an image using the HT-based
method as 7 = 1, Pr, where t,, is the time required to
compute the HT of an edge point. Denoting by Ny, Ny,
Po, and p,, the number of lines and the average numbers
of edge pixels per line, respectively, in the edge images
E, and E,, it can be shown that the times f7; and fr,
required to generate T, (from Ey) and T, (from E,,) satisfy
the inequalities

[dn(Nm + 1) = Npl = I < [N(N, + D/2] (6.5)
Ihr(m]pm

[do(No + 1) = No] = — Tz < [No(No + 1)/2],

Lheo) Po (6.6)
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where d, and d,, are the depths of T, and T,,, respec-
tively.

Now we can estimate the computational advantage of
employing the multiresolution method. We define the
computational advantage ratio as Rcy = t7,/ty,, where I,
is the time required to build 7, (from T,, and E,).

To simplify the derivation we assume that every
straight line o detected from E, (when building T;) has a
corresponding line A, in T,,. In other words, E, contains
boundary information at resolution levels L = m only.
Therefore, the number of lines N,, at resolutions L = m is
equal to N, above. (This is a reasonable assumption
since: (1) the time #,, required to detect the partitioning
lines at resolutions m < L = 0 is usually much smaller
than the time required to detect the lines at resolutions L
= m, and (2) 1, contributes to both 7, and t7,.) Conse-
quently, t7, = tr, + trcus » Where g, is the time needed to
perform the line focusing algorithm on the N,, lines.
Since the line focusing computation takes place at resolu-
tion 0 (i.e., in Ey) we estimate e = i) Nom Po. Here, we
neglect the residual edge points that satisfy the line fo-
cusing condition of Eq. (5.2.15), but do not belong to the
line k().

Moreover, due to subsampling by the decimation fac-
tor M = 2°™, we have py = Mp,,. Similarly, t3 =
Mty.m . Under these assumptions, it can be shown that

MK

M?log, K _
A=Wy K’

where K = (N, + 1)/2.

The expression for the lower bound of R, is based on
the assumption that the number of nonleaf nodes N,, of a
complete binary tree is much larger than the depth of the
tree d,,. (This is a reasonable assumption for complex,
real-life images.)

It is important to note that the lower bound of R¢, is
always larger than 1, since M? and log, [(N,, + 1)/2] are
always larger than 2 and 1, respectively. Therefore, using
the multiresolution approach will always provide a com-
putational advantage versus the direct application of the
HT-based method.

For example, if N,, = 255 (the numbers of partitioning
lines in the decimated images shown in Fig. 17 are of the
same order of magnitude), then the lower bound of R4
would be 2.6 and 4.9 when the decimation factor M takes
on the values 2 and 4, respectively. For these same val-
ues of M and N,,, the upper bound of R4 would be 3.9
and 14.2.

From Eq. (6.7), it is easy to show that both the lower
and the upper bounds of R¢4 increase when the number
of partitioning lines increases. Therefore, the more com-
plex the image, the more computational advantage one
can gain from the multiresolution approach. The same is
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true (i.e., more computational advantage) for larger val-
ues of the decimation factor M.

Moreover, the upper bound of Rq4 can be estimated by
M? when (N,, + 1)/2 > M? which is the case in most
images. In practice, the topology of the BSP tree of a
typical image (as the one shown in this paper) is between
the two extreme cases of complete and asymmetric trees.
Therefore, for the average case the value of Rcy is of the
order of M2,

It is important to remember that (Eq. (6.7) quantifies
the computational advantage one can gain for applying
the multiresolution approach at only one level of the pyr-
amid. Therefore, more reduction in the computational
expense can be achieved when this multiresolution
method is used at the different levels of the hierarchy.

Finally, it is crucial to note that the main objectives of
the computational complexity expressions derived in this
section are (1) to quantify (in terms of order of magni-
tudes) the different computational aspects of the HT-
based and multiresolution BSP tree generation methods,
and (2) to show that the multiresolution approach pro-
vides a clear reduction in the computational expense of
the HT-based method.

7. BSP TREES FOR IMAGE COMPRESSION

Image compression has taken a new direction by de-
signing more representative messages of typical image
sources. Among the promising techniques, let us mention
pyramidal coding [6] and contour-texture coding [21, 22].
Within the contour-texture approach, segmentation-
based techniques have been given a great deal of atten-
tion. Images are described as a set of regions with their
own luminance model (often of polynomial type). Limits
were reached due to the high cost in describing region
boundaries accurately. Even with a very limited number
of regions, the boundary information represents 75% of
the total cost. With more rigid partitioning of the images,
such as a quadtree-based representation, the tree struc-
ture is simple to encode at the expense of a large number
of regions (cells).

BSP trees have the advantage of providing a more
compact representation of images in terms of number of
polygons (of the order of 150 for images of Figs. 11 to 13,
and 600 for the image in Fig. 14), with a simple and diver-
sified description of the region shape.

The simple data structure of BSP trees makes the de-
coding of images represented by BSP trees particularly
simple. Encoding an image using its BSP tree representa-
tion requires the description of the tree structure, the
partitioning line equations assigned to each internal (non-
leaf) node of the tree, and a luminance model for each
convex polygonal domain defined by a leaf in the tree.
Here, we use the average value of the pixel intensities




BSP TREE REPRESENTATION OF IMAGES

within each unpartitioned polygon (cell) as the luminance
model.

In what follows, we assume that the BSP tree contains
M internal nodes (including the root) and N leaves. The
tree structure can be encoded using 1 bit per node, i.e., a
total of M + N bits. The line equations are parameterized
by the two parameters 6 and p. Without any entropy
consideration, the encoding can be optimized by noticing
that each line is represented by two points. For each
node in the tree, these points belong to the polygon that
this node describes. This will however make the decod-
ing of the entire BSP representation rather tedious. For
simplicity, we choose to represent every line with two
points on separate image borders.

If the image size is 2% X2/, the first point requires
max(k, [) + 2 bits. The other point can appear at any
location on one of the three remaining borders of the
image. Its location can be encoded with less than max
(k, I) + 2 bits as well. In our example, this corresponds to
a cost of at most 20 bits per line. As mentioned before,
each unpartitioned polygon was assigned the mean value
of the pixels it contains. Five bits were sufficient to en-
code this mean value. Hence, the overall cost to recon-
struct any image using a BSP encoding strategy is
bounded by

C = 2IM + 6N.

Using this strategy, the images of Figs. 12 and 14a were
coded using 0.055 and 0.25 bit per pixel, respectively.
This represents a compression ratio of about 150 (Fig. 12)
and 40 (Fig. 14a) to 1. These results are preliminary and
more work is underway to improve the quality and effi-
ciency of the BSP tree representation of images.

One way to achieve higher compression ratios, for ex-
ample, is to take into account the correlation between a
given line, which is associated with a nonleaf node u, and
all other lines which are represented by the ancestors of
. The compression numbers given above neglect this
correlation model. In addition, one can generate a more
accurate representation of the cells by using higher-order
polynomials for the pixels within the unpartitioned poly-
gons. The results shown in this work are based on a zero-
order model (the mean value). In a future work, new BSP
tree-based compression results will be presented using (1)
the correlation among the partitioning lines, and (2)
higher polynomial models for the pixel intensities within
the unpartitioned polygons of the image.

8. CONCLUSION

In this paper we have introduced a Hough transform-
based method for generating a BSP tree representation of
an arbitrary image. A recursive algorithm (that imple-
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ments the method) was successful in partitioning a com-
plex image consisting of several objects (of different sizes
and shapes), and in generating efficient segmentation us-
ing BSP trees.

Due to the good segmentation performance of BSP tree
representations of natural images, and the BSP tree effi-
cient data structure, it is expected that a great variety of
applications ranging from computer graphics to image
processing and computer vision would take advantage of
this approach. In particular, we have shown the potential
of this representation for high-compression image cod-
ing. For computer graphics purposes, we are considering
this approach for manipulation of objects found in natural
scenes. Moreover, image understanding or feature point
classification could benefit from this representation.

Finally, we showed a multiresolution method for gen-
erating the BSP tree from several scale-space images de-
rived from an original image. This hierarchical approach
included the introduction of a line focusing algorithm
used to combine the trees representing the different
scale-space images. As described above, the multiresolu-
tion approach provided a significant improvement in
speed and segmentation performance.
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