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FCO Sampling of Digital Video Using
Perfect Reconstruction Filter Banks

Jelena Kovacevi¢ and Martin Vetterli

Abstract—Three-dimensional nonseparable perfect reconstruction filter
banks using three-di ional able sampling by two, FCO, are
proposed. Filter structures are derived and applied to digital video.
Separation into two bands is obtained, and is shown to perform better
from the perceptual point of view when compared to interlaced sequences
resulting from the quincunx sampling of a progressively scanned signal
in time-vertical dimensions.

I. INTRODUCTION

Subsampling of video sequences is a common operation, and
interlaced sampling has been used since the introduction of television.
Both from a theoretical and practical point of view, it is of interest
to investigate alternative sampling schemes having the same density.
In particular, given an initial progressive video sequence (that is,
a sequence sampled on a rectangular three-dimensional grid), one
would like to investigate subsampling by two, and contrast the
performance of a true three-dimensional subsampling pattern (FCO)
with that of the traditional interlaced subsampling (or quincunx
sampling in time and vertical dimensions).

We will pursue two goals: 1) to obtain a good subsampled version
of the original sequence, and 2) to be able to reconstruct the original
sequence perfectly from subsampled sequences. If only 1) were
pursued, one would use standard low-pass filtering, possibly including
motion, whereas if only 2) were desired, simple subsampling into the
two cosets of the lattice would be sufficient. However, meeting both
1) and 2) requires the design of perfect reconstruction filter banks
for the particular subsampling lattice. Such schemes are also known
under the name of subband coding, and are well studied in speech and
image compression [1]—[6]. In an earlier work [4], we had developed
filter banks specifically for the progressive-to-interlaced conversion of
video, and had demonstrated perfect reconstruction systems with cer-
tain attractive features (low complexity, orthogonality, linear phase).
In this paper, we extend the work to FCO sampling, and compare it to
the more traditional interlaced subsampling in terms of performance.

II. QUINCUNX AND FCO SAMPLING

n
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Assume that the original sampling lattice is rectangular, i.e.,
The quincunx sampling process is represented by the quincunx

sublattice

_\Q:{(nl.nz)']nl+n-2:2k. n;. L’EZ}, 1)
Take its three-dimensional counterpart, that is, the face-centered
orthorhombic (FCO) lattice, described by the following set of points:

Arco = {(111.172.773)[ |ny +no+ny =2k n,. k € Z}
@)
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Fig. 1. Quincunx and FCO sampling performed
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as can be seen in Fig. 1. Both of these lattices can be generated
by Dk where D is a nonunique matrix characterizing the sampling
process and is an integer vector. For the two cases of interest, a
possible choice is

1 1 1 0 1
Do = (1 _1>_ Dreo| -1 -1 1 3)
0 -1 0

It is worth noting here that the above choice of matrices was not
arbitrary; rather, it was meant to ensure that their powers are diagonal
matrices. This is a very useful feature if the same filter bank is to
be cascaded (e.g., in the quincunx case, every other step would then
lead to rectangular sampling). Thus, for example, Dé = 2I and
D} = 2I. It can be seen that, in both cases, the sampling process
discards half of the samples (see Fig. 1). This sampling density can
also be obtained from the determinant of the sampling matrix. Hence,
the absolute value of the determinant, in both the quincunx and FCO
cases equals two.

In what follows, we will need the notion of the Voronoi cell of
the reciprocal lattice [7], [8]. It suffices to say at this point that it
represents the set of points in the frequency domain closer to the
origin than to any other point where the spectrum is replicated (due
to sampling). For more details, refer to [7], [8]. It is obvious, then, that
if the input signal is band-limited to that region, no overlapping of
spectra will occur, and reconstruction of the signal from its samples
will be possible. The Voronoi cell of the reciprocal lattice in the
quincunx case is a diamond, while in the FCO case, it is a rhombic
dodecahedron.

M1

For a given subsampling factor, one approach in selecting a
subsampling pattern is to maximize the energy retained in the
subsampled version of the input signal (assuming that proper filtering
is done to prevent aliasing).

For signals with flat spectra, any pattern will do, but for spectra
with structure, different patterns will gather more or less of the
original signal’s energy. The amount of energy retained also depends
on the particular low-pass filter chosen for a given subsampling
pattern.

We will first consider subsampling by two and two-dimensional
signals (sampled originally on a rectangular grid) with flat circular
spectra (that is, [S(wi.w2)] = 1 for \/w? + w2 < ). These signals
have energy /4.

For separable sampling by two, a perfect one-dimensional half-
band filter is used. The support of the low-pass filter maximizing the
energy retained is a rectangle (low-pass in one direction and all-pass
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in the other), and the energy gathered in the low band equals 60%
of the input signal’s energy.

If we modify the subsampling pattern to quincunx, then the support
of the low-pass filter maximizing the energy will be diamond-shaped.
The original signal’s energy retained by this particular filter is 64%.

From a perceptual point of view, and assuming that two-di-
mensional signals are images, the difference is even more striking.
The points of the spectrum lost in the quincunx case correspond
to diagonals (to which the human eye is fairly insensitive), while
in the separable case, horizontal high frequencies (above m/2) are
lost, leading to blurred vertical edges (similarly for vertical high
frequencies/blurred horizontal edges).

Going to three dimensions, one can now compare separable,
quincunx, and FCO subsampling by two for signals with spherically
uniform spectra (this model is of limited validity for motion video,
but is an adequate compromise if a stationary model is needed). It
can be verified that 73.7, 84.3, and 95.5% of the energy is gathered
by separable, quincunx, and FCO subsampling, respectively, using
the ideal filters depicted in Fig. 2.

Again, from a perceptual point of view, FCO subsampled video
sequences present less objectionable artifacts (as will be seen later),
and thus, both from the mean-square error and perceptual standpoints,
FCO is the better way of subsampling by two.

IV. ANALYSIS AND SYNTHESIS OF MULTIDIMENSIONAL
PERFECT RECONSTRUCTION FILTER BANKS

It is well known that a subband system, due to downsampling,
is periodically shift-variant (see, for example, [2]). It is this shift
variance that leads to aliased versions (or overlapping repeated
spectra) of the input signal in the output. A convenient way to take
care of the shift variance of such a multidimensional multirate system
is to decompose both signals and filters into so-called polyphase
components, each one corresponding to one of the cosets of the
output lattice, and thus, a single-input linear periodically shift-variant
system can be expressed as a multiinput linear shift-invariant system.
For more details, see [5]. In both the quincunx and FCO cases,
filters and signals are therefore decomposed into two polyphase
components. Hence, signals at the output of the analysis bank can
be represented in terms of the input signal, the forward polyphase
transform p; = (1. :7'). and the analysis polyphase matrix Hy(z)
(that is, the matrix containing the polyphase components of the
analysis filters), while the output signal can be represented in terms of
the input channel signals, the synthesis polyphase matrix G, (z) (that
is, the matrix containing the polyphase components of the synthesis
filters), and the inverse polyphase transform p, = (1. zy). Then, the
output of the synthesis bank in the quincunx and FCO cases would
be

Yolsi.z2) = (5 '1) - G,,(ZDQ) <Hp(zDQ) --’q)(ZDQ)
)

Yrcol(zy. 2. 23) :(;1_11) -G},(ZDF('O) ‘HP(ZDFCO)
':cp(zDFCO) (5)
where zPe = (z122.2125 "), while zDrco = (125t s ey

z122). After having achieved the goal of obtaining perfect recon-
struction, one might impose some other requirements on the filter
bank, such as linear phase. Note that when compared to the one-
dimensional case, the linear phase requirement is less constrained
since linear phase in multiple dimensions means just centrosymmetry
of the filter’s impulse response.
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Fig. 2. (a) Separable, (b) quincunx, and (c) FCO sampling by two of
three-dimensional signals with spherically uniform spectra. Shaded regions
represent ideal low-pass filters.

When synthesizing filter banks, one of the most obvious approaches
is to try to find cascade structures that would generate filters of the
desired form, the reason being that cascade structures 1) usually have
very low complexity, 2) higher order filters are easily derived from
the lower order ones, and 3) the coefficients can be quantized without
affecting the desired form. For building linear phase cascades, one
has to make use of the linear phase testing condition given in [5]. In
the next section, particular cascade structures from [5] will be used to
construct three-dimensional perfect reconstruction linear phase filter
sets. For orthogonal filters, see [9].

V. THREE-DIMENSIONAL PERFECT RECONSTRUCTION FILTER PAIRS

Let us now try to find a reasonably good linear phase set. To that
end, a result from [5] will be used. For the sake of simplicity, it will
be only summarized here. For more details, refer to [5]. It basically
states that a perfect reconstruction linear phase filter set of sizes
3 and 5 in dimensions (1.---.n) can be generated from a perfect
reconstruction linear phase set with the same sizes in dimensions
(1.--+,n = 1). Moreover, this solution is general for linear phase
filters of that size. Higher order filters can be obtained by cascading
basic building blocks while retaining perfect reconstruction property.
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Fig. 3.

However, for the purposes of this paper, the smallest size filters will
be used.

Thus, starting from a general one-dimensional solution, linear
phase filters of sizes 3 and 5, one can obtain the two-dimensional
solution generating diamond-shaped filters from [4]

-1
-2 4 =2
ho(ni.na)= | —1 4 28 1 -1
-2 4 =2
-1
1
hi(ni.nz)=1{1 -4 1]. (6)
1

Using this filter set as a starting point, one can construct the
three-dimensional filters using the technique from [5], yielding the
following polyphase components of the two filters:

Hoyg (zD”’O) =l+asz?+:" + ((1 + ;}-)(1 + :fz)

. :;1(:{1 + :-3)
ad L=2(_ -2 2 D
+ a ! (22" +=2) + (A+ :)
. (1 + :fz):rl(:;:l + ;3)
aD+ Ady\ _5, _ _
+ (T):] 2(:2 '+ :2)(:3 'y .:3)
AD _,, _. }
—:12(:32+:§)) (7

Ho (ZDFCO) = (11(1 + :fz) +d- :fl(;;1 + :2)
+ Dz (2 + ) (®)

Hw(zDFCO) =14:77 + a2 (5 + )
+ A (= ss) ©)
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Impulse responses of the linear phase three-dimensionat 3/5 set, where X' = —6 and Y = —66.

Hy, (ZDF('O) =,

Drco _ ( -1 -t -1

R IR !

(10)

where z .:1:2). As already pointed out,
this solution is general. If further symmetry is required, one can
impose a = A = l.ad/a, = AD/a, = 1. To obtain a good low-
pass filter, we will impose a zero at (w.7.w) on the filter Ho. The
same will be done for the high-pass, i.c., a zero at (0,0,0) will be
imposed on the filter H;. The impulse responses of the linear phase
three-dimensional 3/5 set are given in Fig. 3 with X = —6 and
Y = —66.

VI. POSSIBLE SCHEMES AND EXPERIMENTS

Let us first briefly review the scheme proposed in [4]. The
input progressive sequence is split into two interlaced subsequences
by means of filtering and quincunx sampling over time-vertical
dimensions. This kind of decomposition can be useful for com-
patible representation and coding since, for example, a present
NTSC receiver could use just the interlaced sequence, while a
more sophisticated HDTV one could perfectly recover the original
progressive sequence with the help of the “deinterlacing” channel.
The same scheme can be used to go from interlaced to progres-
sively scanned sequences and back, a process that could be useful
for motion estimation/compensation purposes. These steps can be
combined, resulting in a two-step splitting of the original sequence.
This last decomposition could be viewed as a very rough wavelet
decomposition of the progressive sequence. The filters used in this
scheme are the ones given in (6).

As pointed out, the aim here is to evaluate the gain of processing
the video signal using a true three-dimensional scheme when a data
rate reduction of two is needed. Hence, in a similar fashion as in the
quincunx case, one can start with a progressive sequence and split it
into two FCO sequences. Thus, the sequence is passed through the
low-pass filter ho(n.n2.n3) from Fig. 3. To be able to compare
the subband obtained in this fashion with the interlaced one, the
two-channel scheme from the last section is used. However, due to
the fact that there do not exist “FCO-interlaced” screens, the FCO
subband cannot be observed directly. To that end, both the FCO and
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Fig. 4. Frame from the (a) original progressive sequence, and
reinterpolated subchannel in the (b) quincunx scheme, (¢) FCO scheme.

the interlaced subbands are reinterpolated to the original, rectangular
grid. For the FCO subband, the interpolation is performed using a
simple, six-neighbor averaging filter, while the interlaced subband is
reinterpolated using a four-neighbor averaging filter.

Upon observing the result, it was obvious that using the FCO
sampling results in a visually more pleasing sequence. Since most
natural moving scenes have their energy concentrated in the low-
frequency band (see Section III), this result was to be expected due
to the fact that in the FCO scheme, the high band contains the
high frequencies in all three dimensions, as opposed to the quincunx
scheme, where the high subband contains high frequencies only in
the time-vertical dimension. It is, therefore, not unexpected that the
artifacts occurring with the FCO scheme are visually less disturb-
ing than the ones observed in the quincunx scheme. Fig. 4(a)—(c)
shows representative frames from the original progressive sequence,
the reinterpolated quincunx sequence, and the reinterpolated FCO

Fig. 4. (Continued)
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vertical vertical
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Fig. 5.

Interlaced input produces a field-quincunx output when the sampling
used is FCO.

sequence, respectively. It can be seen that in the FCO scheme
[Fig. 4(c)], the contours are sharper [compare, for example, “Super
8” in Fig. 4(b) and (c)]. Also, the concentric circles appearing in the
quincunx case [see the middle of the “turning wheel” in Fig. 4(b)]
appear in the corners in the FCO case. When observing the sequence,
it can also be noted that there is some “line crawling” in the
background of the natural scene (upper left-hand side of the frame).
This disturbing effect is completely eliminated using FCO sampling.

In the above splitting, the input sequence is progressive. An
interesting question is: What do we obtain if an interlaced sequence
is sampled with the FCO lattice? The answer turns out to be a
field-quincunx sequence, that is, a sequence that could serve as one
of the MUSE signals (MUSE is the NHK scheme developed for
HDTV satellite broadcase [10]). Fig. 5 shows the input, the interlaced
sequence, and the obtained subsequence.

VII. CONCLUSION

In this paper, a scheme has been proposed as an alternative to
the quincunx scheme, which achieves a data reduction of two by
interlacing. It uses the only true nonseparable sampling by two in
three dimensions—FCO, and both from an energy-packing and a
perceptual point of view, performs better than the corresponding
two-dimensional splitting—quincunx.
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An Efficient Method for Transposing Large
Matrices and Its Application to Separable
Processing of Two-Dimensional Signals

Michael R. Portnoff

Abstract—Our goal is to transpose an arbitrary matrix when the total
number of matrix elements is too large to store them all in random-
access memory. This problem is often a computational bottleneck in large
computed-imaging problems. We derive a simple algorithm for obtaining
the transposed matrix using only two read/write passes over the data.
This algorithm is efficient for a wide range of practical problems. We
observe that the first step of the algorithm reorders the data in a form
that permits efficient access to the data either by row or by column. Thus
if the only reason for constructing the transpose is to provide efficient
access to the data for processing along the “slow” dimension of a two-
dimensional data set, the matrix transpose can be eliminated simply by
storing the data in this intermediate form. Furthermore, this reordering
can be performed in place with a single read/write pass over the data.

I. INTRODUCTION

Transposing a large matrix on a computer is straight forward so
long as there is sufficient random access memory (RAM) to contain
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the entire matrix. If there is sufficient RAM to contain a copy of the
matrix and its transpose, then the transpose is constructed, trivially,
by copying each element of the matrix to its new location in the
transpose. If there is only enough RAM to contain the matrix itself,
then a square matrix can be transposed in place, simply, by swapping
its elements about the main diagonal, and a rectangular matrix can
be transposed in place with a less simple algorithm [1].

Our goal is to transpose an arbitrary M x N matrix A when the
number of elements in A is too large to store them all, simultaneously,
in RAM. The widely used algorithms for solving this problem are
recursive in nature and based on a perfect shuffle [2], its inverse, a
perfect deal [2], or Eklundh’s divide-and-conquer strategy [3]-[5].
Indeed, these are the methods of choice when only a small amount
of RAM is available. Each of these approaches requires that at least
one dimension of the matrix be an integer power of 2 (or a highly
composite number) and the last requires that the matrix be square.
For M or N a power of 2, the perfect shuffle or perfect deal method
requires negligible RAM and makes log, Al or log, Vread/write
passes over the data. None of these passes is in place. For M/ = V' a
power of 2, Eklundh’s method requires that a minimum of two rows
of A be stored in RAM and will transpose A in log, V' in-place
read/write passes. If more RAM is available, so that 2 rows of A (p
an integer) can be stored simultaneously in RAM, then the number
of passes for Eklundh’s algorithm can be reduced to the smallest
integer greater than (log, N')/p [4].

Our method is not recursive. It will transpose an arbitrary-size
rectangular matrix in two read/write passes and the first pass can
process the data in place. Moreover, during each pass, each matrix
element is moved only once and the indexing is extremely simple.
We developed this method with the premise that “modest” amounts
of RAM are available on contemporary computers. To be efficient,
our method will require sufficient RAM to store on the order of ten
to a few hundred rows of A. We will show that the amount of RAM
required is proportional to the square root of the number of elements
in the matrix.

II. METHOD

Assume that the elements of A are stored row-wise on disk and that
there is sufficient RAM to store, simultaneously, p rows of A(p > 2).
Imagine grouping the rows of A into m submatrices, A; the first m—1
of which are p x V and the last is » x N where 0 < r < p. Thus,

Ay
A,
A= . [©))]
A
We will now transpose A in two steps.

Step One: We read, successively, each A, from the disk, transpose
it and write A7 back to the disk, either to a temporary file, or
overwriting the original data, as desired. The resulting disk file will
contain the sequence of submatrices:

{A;[.Ag.nuAZ,} @

where each individual A? is stored row wise.'Notice that for the
trivial case of sufficient memory to store the entire matrix A (i.e.,
p = M), Step One, alone, produces the desired transpose.

! The file contains a sequence of submatrices rather than a single rectangular
matrix because the last submatrix, Al , will, in general, have dimensions

m?

N x r(0 < r < p) rather than N X p.
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