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Computing m DFT’s Over GF(q) with One
DFT Over GF(¢™)

Jonathan Hong and Martin Vetterli

Abstract—Over the field of complex numbers, it is well-known that if the
input is real then it is possible to compute 2 real DFT’s with one complex
DFT. We extend the result to finite fields and show how to compute m
DFT’s over GF(q) with one DFT over GF(¢™).

Index Terms—Finite fields, DFT, complexity.

I. INTRODUCTION

The discrete Fourier transform and its inverse are defined as

N-1
Xk - Z mnWIT\l]ky (1)
n=0
N-1
o =N! Z X, Witk 7))
n=0
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The definition is valid over any field F' provided that Wy, an element
of order N, exists in F and N~} exists in F.

For F = C, the field of complex numbers, it is well known that if
the input z,, is real then it is possible to compute two real DFT’s with
one complex DFT (6], thereby showing that the complexity of a real -
DFT is approximately half that of a complex DFT. This reduction in
complexity is due essentially to the fact that the C is an extension
of degree 2 over R, ie., [C:R] = 2. In this correspondence, we will
show that this result extends to the case where F is a finite field.
Specifically, if F is an extension field of K with [F: K| = m, then
the complexity of the DFT of a F-sequence is approximately m times
that of a K-sequence. We will demonstrate this by showing how to
compute the DFT of m K-sequences with the DFT of 1 F-sequence.
The procedure is quite general and will be shown to apply to the
real/complex case as well. As is customary, we will assume that the
constants in the algorithm are precomputed and thus the cost of their
computation excluded from the overall complexity of the algorithm.

II. CONJUGACY RELATIONS

We derive, in this section, the well-known conjugacy relationship
that exists among the elements of the DFT of a subfield sequence.
The derivation differs (conceptually) from the usual derivation in that
it makes use of the automorphism group associated with the fields F'
and K. While it is possible to present our algorithm without reference
to the automorphism group; we choose to introduce it in order to
keep the derivation as general as possible. The generality eliminates
the need to rederive the algorithm for the real and complex case in
Section IV.

Let F and K be finite fields such that K C F, then there are
two ways we can view F relative to K. First, with respect to the
addition operation in F, F is a [F: K']-dimensional vector space over
K (notation: Fx). Thus if K = GF(q) and [F: K] = m, then F' =
GF(¢g™); from which it follows that if {80,81, -, fm—1} is any
basis of Fx then any z € F can be written uniquely in the form

z=zofo+ x4+ -+ Tmo18m-1

with the coefficients z; in K. Alternatively we can view F' as an
extension field of K. Associated with this field extension is the group
Aut g F which is the group of automorphisms of F' that leave K fixed.
It is well known that this group is cyclic of order [F: K] and has
as its generator

. q
viar—a,

[1]-[3]. In other words, Autg F' = {1 "';'2'01 where
Lp1=d)1:ai—>aql. ©)
Consider
N-1
Xi=Y 2z Wi
n=0

with z, € K for every n. Since ; is a homomorphism which fixes
elements of K, we see that

N-1 No1
o1(Xk) = ¢ (Z InW]\lrk) = Z Pl(wan'Gk)
n=0 n=0

N-1

N-1
Z Wl(iﬂn)@l(wzf\]lk) = Z $n991(W17\}k)a
n=0

n=0
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therefore,
N2 i
XP =) Wi = Xy )
n=0

Equation (4) is the familiar conjugacy relation [4], [5]. We call X N l
{
a conjugate of X} and {X H }"I’:‘ol the conjugacy class of X.
Define

X~ X; if j =i¢',  for some!l € Z; )
then ~ is an equivalence relation on {X;} with {X kgl } ';L:—Ol the
equivalence class of X. Equation (4) says that when z,, € K, then
the conjugacy class of X is the same as the equivalence class of
Xk, le, )

{0o(X1), 01(Xk),+y pm—1(Xi)}

= {X,“X,g,--.,Xg’"“l}

= (X K Kgs ©

III. CoMPUTING m DFT’s OVER A" WitH 1 DFT OVER F
Given m sequences in K

(0} 0 o)
we can compute the DFT of all m sequences simultaneously with one

DFT as follows. Choose a basis {8y, 81, -, Bm—1} of F . Form
a new sequence {r,} from the m sequences by defining

n=01,---,N -1,

zn =280+ Bt ot 2" By, n= 0,1, N-1

M
Note that the sequences {xsf)} are in K while the new sequence
{zn} is in F. From (7), we have that

N-1 N-1 N-1
Yo Wi =30 Y 2 OWEE 4 3 Z Dk
n=0 n=0 n=0
N-1
44 Bt Z xifh—l)wf;k.
n=0

Thus, if we denote the DFT of {z,} by {X .} and the DFT of {z{}
by {X,(J)}, then the previous equation can be restated as

Xi = BoX" + BXD 4+ 4 B XY, (8)

The problem is to generate the X ,(Cl) ’s from X ’s.
Consider the equivalence class (5) of X

X = 60X, + BX[ 4 4 B X,
Xig = ﬂoX,(c(;) + 3 X,(C;) +oet ﬂm_lX,(c'q"H),

Xpgmo1 = ’BOX,ﬁZi,,,l +HXD e+ B Xm0,

Since {z} is an F-sequence, the conjugacy relation (4) does not
hold for the X,’s. However, the conjugacy relation does hold for
the X,(cl)’s since {x("')} are K-sequences. Therefore, the above can
‘be rewritten as

Xe= X+ BX oo B XY,

Xiq = Bo (X;(CO))Q + 4, (X£1)>q et B (X’(Cm_l))q,

Xiggm-1 = ﬂo(X,(f’))qw1 +6 (X,E”)qm_l oo
+ Bt (Xl(cm—l))q"‘—l

Applying ¢ to X rqt and remembering that in a finite field an
element raised to the order of field is the element itself, we have

20 (B) X + po(B)XY 4.
+ ;}’)U(ﬂm-l)Xl(cm_l)
80X 4 B XD 4o By XD

= Xk,
4 Xkq) = xO 4 x4
‘va—l(‘ ‘HI) = 9’771—1(/30) 5 + 7771!—1(/31) M +

+ ¢m—1 Bm—l))('gcm‘n
=87 X 487 T XD 4 g XD

wol(Xk)

21 (Xpgm-1) = 21(80) X7 + o21(8)X + -
+ 01(Bm) XY
=8X" + x4 8% _ x{mY
= Xq

kqm—1°

or in matrix notation

X | Bo B ,Bn:n—_ll x©
Xi 33 B B XM

qm—2 _ qm—2 qm—’) m=2 (2)
quz - Bo /31 Hm—l Xk
Xf o B8 BT - B ) \X{

)

From this it is clear that the X ,(C') ’s are recoverable from the X;’s
iff the matrix

©o(Bo) wo(B1) ©0(Bm—1)
em—1{Bo) Ym-1(81) Pm-1(fm-1)

M = Vm~2(60) cpm_z(ﬁ]) (Pm—z(ﬁmfl)
©1(50) ©1(B1) ©1(Bm—1)
[rjr?—l Hml—l Brfn__ll
B3 eH gn—lz

=& " (10)

a3 BT e B

is invertible. Fortunately, this is the case.
Theorem 1 [1]: M is invertible iff {80, 31, -+
of F K-
Therefore,

yBm—1} is a basis
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X, #o(Xk) X,

Xl(c ) . ‘mel(qu) . XkrTzn )

Xl(c2) =M 99”1—2(qu2) =M X,‘:qz
Xl(cm_l) w1 (qum—l) X]qu—l

(1)

Let us summarize the procedure. Given F and K with K C F and
[F:K] = m , we can'compute the DFT of m K -sequences {z\)}
with one F-DFT as follows.

1. Choose a basis {50, 81, Bm-1} for Fi.

2. Form a new sequence {z,} where

2n =280+ 2B 4+ 27 B,
n=01,.--,N -1

3. Compute the DFT, {X.}, of {z.}.

4. Compute {X"} from {X,} via (11).

Remark 1: 1t suffices to solve (11) once per conjugacy class. Since
the conjugacy relation (4) holds for X,(,l), any representative member
serves to determine the class uniquely.

Remark 2: As is customary in DFT computations, constants of the
algorithm (i.e., values that are data-independent such as W5 that
depends on N and k) are computed “off-line” and are considered
cost-free. Thus, the evaluation of M~ is considered inconsequential.
Nonetheless, clever choices of basis elements can facilitate the
precomputation of M ™', We mention two particularly useful bases.

a) Polynomial Basis: Let p be a primitive element of F, then

{l,p, pz, v ,p’"*l} forms a basis for FK called a polyno-
mial basis. With this choice of basis, we have

1 (p) (p)? , M
ey ey ety
SR R

1 (0?) (r")? (p1)™ !

(12)

With this choice, M is a Vandermonde matrix; therefore its
inverse can be computed in O(N?2) time (as opposed to O(NV?)
time for a general matrix) by well-known methods.

b) Normal Basis: If we take the basis to be a normal basis, i.e., a

. 2 m—1
basis of the form {a,aq, al - af }, then

2 m—1
@ a af % .
m— m—
af ) a af af .
m— m— —
M= o a? o af (13)
2 3
af af % o

M is seen to be a circulant matrix and thus has a circulant
inverse. We can in fact get M ™! without any calculation in

this case. Let {n,nq,nqz,---,n"m_]} be the (unique) dual

3 2 m—1
basis of {a,aq,a" yoee,al }

Claim:
I LA Gl n?
m—1 2
" n’, o .
M = 77 77 7 n?
M1 me2 3
n? n? n? n

Proof: .
m—1 )
(MMﬁl)ij _ Z aquwknquﬁk
k=0
= tr(aﬂqzi]) = 6ij. D

Tables of finite fields and normal bases can be found in [1], {7], [8].

IV. THE REAL/COMPLEX CASE REVISITED

Though the previous procedure is developed in the context of finite
fields, the derivation is valid, mutatis mutandis, for the case K = R
and F = C. By making use of the automorphism group Autg F,
we have ensured the validity of the derivation in all respects except
for the statement of the. conjugacy relationship. By replacing all
expressions of conjugacy relations in finite fields by their counterparts
in the complex field, we give an algorithm for computing two real
DFT’s with one complex DFT. It will be seen that the algorithm
includes, as a special case, the usual method for performing this
computation.

For K = R and F = C, we have [C:R] = 2 and AutpC =
{(po, 1 }, where

wo : a+ib a+ib,

p1:a+ib— a—1b.
Let {Bo, 51} be a basis for C p. Given 2 real sequences {zﬁ,o)} and
{:1:511)}, form the complex sequence {z,} by defining
n=0,1,---,N - 1.

Denote the DFT of {z\’}, {z{"}, and {z..} by {X{”}, {X "}, and
{X,}, respectively. Then the three DFT’s are related by (11) as

XN _ e wolX)
(Xi” = ()

where (see (10))
v — [ Po(Bo) po(B1)
M= (m(ﬁo) y"l(ﬁl))'

Tn = '77510)60 + x(nl)ﬁlv

In other words,

X)(CO) _ 1 < BT —B )( Xk )
X,(cl) BoBy — BB\ =85 Bo X*. )

In particular, for 30 = 1 and 3; = 7, we have

X\ 1 (=i =i\ X \_1[(1 1\[{ X
XM ) T =2\ -1 1 \Xxr )T 2\~ i J\X, )
(15)

which is the usual method of computing two reai DFI’s with one
complex DFT [6]. '

(14)

V. CONCLUSION

For finite fields F and K with K C F and [F: K] = m we have
shown that a single DFT over F' has complexity approximately m
times that of DFT over K by showing how to compute m K-DFT’s
simultaneously with one F-DFT. The result can be generalized to
arbitrary fields F' and K by assuming additionally the normality and
separability of F' over K. Thus, the precise condition required for
this argument to work for arbitrary fields F' and K is that F' is a finite
Galois extension of K. In the case considered here, since all finite
extensions of finite fields are Galois, the only assumption needed is
that [F': K] is finite. For details, see [9].
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Random Interactions in Higher Order Neural Networks

Pierre Baldi and Santosh S. Venkatesh

Abstract—Recurrent networks of polynomial threshold elements with
random symmetric interactions are studied. Precise asymptotic estimates
are derived for the expected number of fixed points as a function of
the margin of stability. In particular, it is shown that there is a critical
range of margins of stability (depending on the degree of polynomial
interaction) such that the expected number of fixed points with margins
below the critical range grows exponentially with the number of nodes
in the network, while the expected number of fixed points with margins
above the critical range decreases exponentially with the number of nodes
in the network. The random.energy model is also briefly examined and
links with higher order neural networks and higher order spin glass
models made explicit.

Index Terms— Neural networks, spin glasses, polynomial threshold
elements, fixed points, Laplace’s method.

I. INTRODUCTION

Recurrent networks of formal neurons have been popular in a
variety of computational applications. The model neurons in such
structures are typically linear threshold elements which compute the
sign of a linear form of the inputs. A recurrent network results
when such elements are fully interconnected, and as in any recurrent
system, the fixed points are important in the characterization of the
computations done by the structure. A particular case of interest
results when the interconnections between neurons are symmetric:
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in such cases network dynamics are regulated by a Hamiltonian or
energy function (cf. Hopfield [1], for instance). In such an instance,
we can imagine the state space of the network to be embedded in
an energy landscape with fixed points residing at energy minima.
A classical application of such networks is in associative memory
where neural interactions are adjusted so that memories are stored
as local attractors.

We consider here a natural extension of the model to recurrent
networks comprised of higher order neurons that compute the sign
of a polynomial form of the inputs. The added degrees of freedom
in specifying the polynomial interaction coefficients can be expected
to enrich the computational dynamics that result. Distinct features
emerge, however, in the analysis of these structures depending on
whether the higher order interactions are programmed (or “learned”)
or random.

In the programmed scenario, the goal is to tailor the higher order
interaction coefficients so as to obtain desired dynamical behaviors;
this leads naturally to questions of capacity and efficiency of higher
order networks of given degree of polynomial interaction. In two
concurrent papers [2], [3], we present rigorous results on algorithmic
capacity and efficiency in programmed situations for higher order
networks (cf. also Newman [4]). The main results can be summarized
briefly as follows: the computational gains in higher order networks
parallel the extra degrees of freedom in specifying the polynomial
interaction coefficients; in particular, regardless of the algorithm
used to specify the interaction coefficients, the information storage
capability of a higher order network is of the order of one bit per
interaction coefficient.

Higher order systems where the polynomial interactions are ran-
dom may be useful as models of disordered systems in statistical
physics (spin glasses), or of neural networks, before any learning
has occurred, or in the limiting case when too much learning has
occurred (the onset of senility!). These will be our focus of analysis
in this paper: in particular, we consider recurrent, higher order
neural networks with symmetric, random polynomial interactions. We
characterize the fixed points of these structures according to their
margin of stability' that is a measure of how stable a fixed point
is with respect to perturbations. Our main result may be informally
stated as follows: :

There exists a critical range of margins of stability (depending
on the degree of polynomial interaction) such that the expected
number of fixed points with margins of stability below the
critical range increases exponentially in the size of the network
while the expected number of fixed points with margins of
stability above the critical range decays exponentially as the
size of the network is increased.

There is thus a threshold phenomenon in evidence for the expected
number of fixed points around the critical range of the margin of
stability. The fact that for a certain range of margins the expected
number of fixed points grows exponentially with the number of nodes
in the network is not unexpected; more counter-intuitive, perhaps, is
the existence of a critical margin of stability above which the expected
number of fixed points actually decays as more nodes are added. We
also provide exact asymptotic expressions for the coefficients and
exponents in the regime of exponential behavior, and evaluate the
critical margins of stability. While considerable attention has been
focused on spin glass models in the statistical physics literature, at

n this context, this notion is due to Komlés and Paturi [9].
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