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Best Wavelet Packet Bases in a Rate-Distortion Sense

Kannan Ramchandran and Martin Vetterli, Senior Member, IEEE

Abstract—The use of an adaptive tree structure using wavelet
packets as a generalized wavelet decomposition for signal com-
pression was recently introduced by Coifman, Meyer, Quake, and
Wickerhauser [1]). The idea is to decompose a discrete signal using
all possible wavelet packet bases of a given wavelet kernel, and
then to find the “best” wavelet packet basis. Unlike the work in
[1], in this paper we employ a framework that includes both rate
and distortion. A fast algorithm is formulated to “prune” the
complete tree, signifying the entire library of admissible wavelet
packet bases, into that best basis subtree which minimizes the
global distortion for a given coding bit budget or conversely
which minimizes the total coding bit rate for a target quality.
Arbitrary finite quantizer sets are assumed to each hierarchical
level of the basis-family tree. Finally, image coding applications
using wavelet packets as well as a DCT basis family quadtree
segmentation in a JPEG-like environment are described with
favorable results.

I. INTRODUCTION

OURCE coding for stripping redundancy from typical
Shighly-correlated sources like speech and image wave-
forms has been studied extensively. Some popular techniques
addressed in the literature include vector quantization (VQ),
linear predictive coding, linear transform coding (like the KLT
and the DCT), and subband coding as well as various hybrid
combinations of these.

VQ is a popular and powerful scheme for compressing
correlated discrete signal sets whose characteristics have been
“trained” initially, but its complexity grows exponentially
with vector dimensionality. Linear transformations like the
DCT are less computationally demanding, but owing to their
“fixed” nonadaptive nature, their compression potential relies
heavily on the stationarity of the signal. For nonstationary
sources, linear transforms or prediction techniques generally
fail to exploit all of the source redundancy present. If one
could combine the adaptability of VQ with the speed of
linear transform coding, one could achieve a coding scheme
which adapts to signal nonstationarities without sacrificing
computational ease. Wavelet packets, introduced by Coifman,
Meyer, Quake, and Wickerhauser (CMQW) [1], [2] to be
described in Section II, permit this combination, and offer a
flexible yet computationally nonoverwhelming framework in
which to undertake efficient signal compression.

This paper is organized as follows: Section II provides a
brief description of the background information on which the
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rest of the paper is founded, while outlining the scope of
applicability of this work. Section III highlights the intuition
and main idea of the algorithm. Section IV states the problem
formally, while Section V undertakes a fast solution to the
problem. Section VI details the flowchart of the complete
algorithm. Finally, Section VII provides image coding appli-
cations using wavelet packets as well as DCT-based quadtree
segmentation, based on our fast algorithm.

II. BACKGROUND AND SCOPE OF THIS WORK

This section deals with a brief explanation of wavelet
packets, a summary of bit allocation techniques based on oper-
ational rate-distortion theory, a brief look at the related existing
literature and the contribution and scope of applicability of
this paper.

A. Wavelet Packets

Wavelet packets (WP) were introduced recently by Coifman,
Meyer, Quaker, and Wickerhauser (CMQW) [1], [2] as a
family of orthonormal (ON) bases for discrete functions of
R"", and include the well-known wavelet basis and the Short-
Time-Fourier-Transform (STFT)-like basis! as its members.
While a brief description of wavelet packets, together with an
intuitive feel for what they represent, will be provided here,
the interested reader is referred to [1] and [2] for a detailed
mathematical treatment of the subject.

Wavelet packets represent a generalization of the method
of multiresolution decomposition, and comprise the entire
family of subband coded (tree) decompositions. They offer
fast access to a rich menu of ON bases, from which the “best
basis” can be chosen. If one represents the complete subband
decomposition of a discrete signal set in RN s a regular
analysis tree of depth log N, the CMQW approach permits
the choice of a decomposition topology corresponding to any
pruned subtree of the original tree, i.e., any subtree sharing the
same root as the original tree. This is obviously isomorphic
to all permissible subband topologies (see Fig. 1), with the
collection of terminal or leaf nodes of every pruned subtree
representing the entire library of permissible ON bases.

Thus this decomposition might be used to code independent
segments of a given nonstationary signal. It enables the
coder to exhibit, for example, a STFT-like characteristic
(regular tree) at one source instance, a wavelet characteristic
(logarithmic tree) at another instance, or any intermediate
characteristic (arbitrary WP subtree) at yet other instances,
to best match the signal’s nonstationary statistics. See Fig. 1.
The ON property is vital to the development of the fast

! That is, the basis which results in uniform frequency resolution.
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Fig. 1. (a) Tree notation for analysis filter bank: The lower branch, Ho
is the low-pass filter, and the upper branch, Hy is the high-pass filter. (b)
All possible binary wavelet packet decompositions of depth 2. Note that n;
refers to the jth node at the ith scale of the tree, as shown in the full tree.
(c) Some permissible depth-3 decompositions.

i

pruning algorithm, as it enables the coding rate and distortion
associated with any tree to be additive over the rates and
distortions of the leaf nodes, with respect to an I» norm (like
mean-squared error (MSE) or weighted MSE) criterion.

B. Quantization and Bit Allocation

The problem of bit allocation, where a given bit budget
must be distributed efficiently among a set of given admis-
sible quantization choices, is a classical problem in signal
compression that has received exhaustive treatment in source
coding literature [3]—[5]. A classical framework for source
coding is Shannon’s rate-distortion theory [6], which deals
with minimization of source distortion subject to a channel
rate constraint, or the dual problem of minimization of channel
rate subject to a distortion constraint. A practical coding
environment involves a finite set of admissible quantizers,
characterized by their (operational) rate-distortion functions
[7], ranging from convex [3] to completely arbitrary [4]. These
quantizers are used by the allocation algorithm to determine
the best strategy to minimize the overall coding distortion
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subject to a total bit rate budget constraint. We use this
framework to seek our best basis WP and best quantizer
choices.

C. Related Work and Contribution of this Paper

While the adaptivity and speed of the best-basis search
of [1] are unmistakable, the cost criterion and the coding
(quantization) method used there to exploit this speed and
flexibility are somewhat ad hoc. In [1], one choice of the best
basis is the one which results in the fewest number of nonzero
coefficients after thresholding is performed with respect to
a desired threshold. Other choices include the use of one-
sided metrics like entropy only or MSE only. None of the
above schemes is optimal in a rate-distortion sense, nor do
they address the problem for arbitrary sets of quantization
choices, as is done here. In our framework, the best basis
and its optimal quantization choice are found jointly using an
R-D criterion of smallest distortion for a given bit budget or
vice versa. While our algorithm is inspired by a search for
the best basis wavelet packet, it obviously applies to quadtree
segmentations as well. In fact, our approach could be viewed,
in its quadtree application, as an extension of the work by
Shoham and Gersho [4] to proved a fast algorithm covering
hierarchies of admissible quantizers. It may also be regarded,
in this context, as a generalization of Chou et al.’s (G-BFOS)
algorithm [5],[8] to the case where monotonicity constraints
of rate and distortion with tree depth are removed. Fig. 2(a)
gives an example of a rate-distortion characteristic that is
constrained to be monotonic with tree depth,2 as identified
by a single transition form the “merge” to “split” boundaries,
a constraint that is necessary for the quadtree algorithm
mentioned in [5]. Fig. 2(b) shows a nonrestrictive case, where
arbitrary transitions between the “split” and “merge” regions
are permitted.

While bit allocation strategies for various coding environ-
ments have been formulated in the literature, the problem
of using arbitrary quantizers in a generalized multiresolution
wavelet decomposition framework in an R—D optimal way
has not, to the best of the author’s knowledge, been addressed.
While the treatment uses combinations of well known meth-
ods, the current interest in WP’s is such that we believe our
contribution to be useful. Thus the merit of this work could
be viewed in its merging of the concept of orthonormal tiling
of the time—frequency plane using wavelet packets, a recent
result from the “wavelet” community [2] with the discipline
of R=D optimal bit allocation, the bread and butter of the
“quantization” community [7].

A practical contribution of this paper involves the descrip-
tion of the results of WP-based image compression using
the Daubechies D4 set of wavelet filters. We also perform
quadtree-based image compression using a family of DCT
bases (as in [9], which is not, however, R—D optimal).
This application is similar to that of work independently
done by Sullivan and Baker [10], who performed efficient
quadtree segmentation using VQ. Our example uses classified

2That is, as the tree grows, the rate increases and the distortion decreases.
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Fig. 2. “Split/Merge” boundaries shown for (a) monotonic case to which the G-BFOS algorithm is constrained, and (b) nonrestrictive case.

quantizers in a hierarchical JPEG (DCT-based) [11] coding
environment.

It must be emphasized that the standard basis tree employed
by [10] is not a WP tree, which is derived recursively
using Quadrature Mirror Filters (QMF) filter banks or using
multiresolution wavelet analysis (whose equivalence has been
established [12],[13]). The scope of applicability of our al-
gorithm extends to all classes of structures which permit the
construction of a hierarchy of basis covers for the input signal
space. While this obviously includes structures like quadtrees
and orthonormally transformed (e.g., DCT) quadtrees, other
powerful structures such as the CMQW multiresolution de-
composition wavelet packets and hierarchical subband coders
are also applicable. In fact, the optimal tree pruning and bit
allocation results of this paper apply to the entire family of
hierarchical lapped transforms (HLT’s) [14],[15]. As an exam-
ple, our algorithm could be used to determine quantitatively,
such important coder design considerations as the optimal
decomposition depth for subband coding, or a performance
comparison of filter banks of different kernels and topologies,
or to determine an efficient DCT quadtree structure in a
“hierarchical” JPEG application. Also, it can be extended to
the “double tree” algorithm [16] to find optimal orthonormal
signal splits, a topic of considerable interest in time-frequency
analysis as well as signal compression.

I11. BASIC IDEA OF THE ALGORITHM

We consider a rate-distortion framework with independent
coding of the nodes of the wavelet packet tree and an MSE
distortion metric. Due to additivity of the rate and distor-
tion measures over disjoint covers of the input, the “hard”
constrained problem of seeking the best WP basis which
minimizes the average distortion D for a target average bit
rate R (or vice versa) can be converted to an “easy” equiva-
lent unconstrained problem by “merging” rate and distortion
through the Lagrange multiplier A [4]. Thus the unconstrained
problem becomes the minimization of the Lagrangian cost
function defined as

J(A\) =D+ AR. (1)

It can be shown that at R—D optimality, all signal elements
(or leaves of the wavelet packet tree) must operate at a constant
slope point A on their R-D curves (see Fig. 3). For a given
X = |AD/AR)|, we populate each node of each tree block
independently with the Lagrangian cost function associated
with the best quantizer for that node. The best quantizer for
a particular tree node is that one which “lives” at absolute
slope A on the convex hull of the operational R-D curve for
that node, as shown in Fig. 3. Then, by applying the pruning
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Fig. 3. Lagrangian cost pruning criterion for “quality criterion”™ A for cach
parent node of the wavelet packet tree. This condition is used recursively to
do fast pruning from the complete tree depth towards the root to find the
optimal subtree for a given A.

criterion of Fig. 3 recursively on every node, starting from
the full-depth tree and proceeding towards the root, we find
the sequence of best wavelet packet bases and associated best
quantizers with which to code the signal. The desired optimal
constant slope value A* is not known a priori and depends
on the desired target budget or quality constraint. Fortunately,
however, A\* can be obtained relatively painlessly via a fast
convex recursion in A using the bisection algorithm, as will
be shown later.

IV. FORMAL PROBLEM DEFINITION

Without loss of generality, we will consider the problem of
a binary wavelet packet decomposition tree of a 1-D discrete
input signal (vector) of size N in [2(N)(s1.89, " .5n).
Though omitted for convenience, each branch of the analysis
tree consists of the appropriate filter: high-pass filter (HPF)
Hy for the upper child and low-pass filter (LPF) H; for the
lower child, followed by a decimator by 2 (see Fig. 1), with
the corresponding synthesis tree consisting of an upsampler
followed by the corresponding synthesis filters.

The analysis and synthesis filters of each branch satisfy
the standard orthonormality conditions of paraunitary perfect
reconstruction filter banks (PRFB’s [13]). As is well known,
iterating the orthonormal filter templates to the complete
tree depth results in an equivalent generalized multiresolution
decomposition tree (i.e., wavelet packet tree) whose nodes rep-
resent a family of orthonormal bases [1], [2]. We assume that
there are M signal blocks to be coded independently, each of
size N. As the algorithm works in parallel for all independent
blocks, it will suffice to analyze a single block. To help provide
a clear notation-free understanding of our algorithm, we intro-
duce a “toy” example that we will invoke at various points in
this paper, which uses a length-4 signal block with maximum
tree depth of 2 (see Fig. 4). The example uses the popular Haar
basis ({{1/1/(2),1//(2)],[1//(2). —1/,/(2)]}) or sum and
difference filters as the wavelet kernel. See Fig. 5 for the five
possible depth-2 Haar WP bases.
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Fig. 4. Toy example showing a depth-2 wavelet packet decomposition
for a length-4 signal block using the popular Haar wavelet basis
(Hy(z) = 1/sqre(2)(1 + z71) and Ho(z) = 1/sqrt(2)(1 — =71)). (a)
Full tree showing the root A, level-one B, and level-two C. (b) Orthonormal
wavelet packet basis vectors associated with each tree node. Note that the
{«}’s represent the inner product of the signal with respect to the basis
vectors {b'}.

Let us define the following terms to be used in the formu-
lation:

» T: Complete WP tree (STFT tree) for each signal block
of depth log N.

¢ § < T: Pruned subtree of T, i.e., any admissible WP
bases subtree.

+ §: Set of leaves or terminal nodes of subtree S.

* ni.bi.ch: The jth (of possible 2° choices) node, basis,
and coefficient vector respectively, at the ith tree-depth or
“scale” (for i = 1.2,---,log N). Note that b;- represents

the R -basis members associated with node n; while ¢}
represents the inner product of the signal with the basis
vectors in b’] Thus, for the depth-2 decomposition for
a Haar wavelet kernel (see Fig. 1(a)), the 5 ON bases
corresponding to all permissible subtrees are listed in
Fig. 5. Note also that to simplify notation, the subscripts
i.j will be dropped where not necessary, thus resulting
in node n, along with its associated basis and coefficient
vectors b, and c¢,,, respectively.

* gq(n): Set of all admissible quantizers for node n € T.
The toy example at the end of this section presents some
admissible quantizer choices for a particular case.

* Qgu(S): Vector set of all admissible quantizers for the
collection of individual leaf nodes of subtree S =
{aa(n1) x qg(n2) X --- x qa(nr)}, where {ni,ng, -
nr} € S, is the complete set of leaves or terminal nodes
of S.

¢ Dy(n), Ry(n): Quantization distortion and bit rate, re-
spectively, for WP coefficient vector ¢, of node n using
quantizer ¢ € gq(n). Note that we assume completely
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Fig. 5. The five possible orthonormal wavelet packet bases for a depth-2
tree using the Haar wavelet kernel. Note that HP refers to the high-pass
dlfference filter Ho = 1/6qrt - "“] and LP refers to the low-pass
“sum” filter Hy(z) = 1/.sqrt )1+ =71,

arbitrary quantizers (including VQ), and completely arbi-
trary (entropy) coding schemes. The only assumption we
invoke is that the nodes be coded independently and that
the distortion measure be additive.

* Do(S), Ro(S): distortion and rate, respectively, asso-
ciated with coding subtree (or wavelet packet) S using
quantizer Q € Qq(S). In our case, they are both linear
tree functionals; i.e., the total tree rate and distortion
values are, respectively, additive over those of the leaf
nodes: The total distortion (Dg(S)) is 3, 5 Dq(n) and
the total rate (Ro(S)) is D ,cg Bq(n).

The problem to solve, then, is that of finding, given a total
budget of Rpydget to code M independent signal blocks, that
sequence of WP “best-bases” S < T (fori=1,2,---, M)
together with their associated optimal quantizers QF € Qq(S;)
which minimize the global coding distortion. Note that or-
thonormality at the block boundaries can be preserved either
by a periodic extension of the blocks at the boundaries or by
using ON boundary filters [16]. Stated mathematically, this
boils down to determining Dnin = Z 1 Da: ( (S7), where,

Dg-(8¥)= min| min Dg,(S:) )]
Q; S’jTL)IGQa(S) Q
such that
M
Rtotal = Z RQ:(S:) S Rbudget (3)

=1

where Rpudget iS the given bit budget constraint.

V. Toy EXAMPLE

As an example, suppose we want to find the best wavelet
packet basis corresponding to the Haar wavelet kernel for an
input signal s = [109, 23, —98, 13], with one block and dimen-
sion 4, i.e, N =4. M = 1. for a coding budget of 21 bits.
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Assume the following classes of admissible quantizers for each
tree level: we have three grades of uniform quantizers (coarse,
medium, and fine) having step sizes of 16, 4, and 1 resp., or
equivalently, a granularity of 16, 64, and 256 levels (using 4, 6,
and 8 bits) respectively, assuming a quantizer dynamic range
from —128 to +128. As shown in Fig. 4, for convenience,
the tree scales are denoted by the labels A, B, and C. At
full tree-depth C, the quantizers 1, 2, and 3 denote the fine,
medium, and coarse scalar quantizers for each of the 4 wavelet
packet coefficients C1-C4. At depth B, the quantizers 1, 2,
and 3 denote the [fine, fine], [medium, medium] and [coarse,
coarse] combination of quantizers applied independently to
each of the wavelet packet coefficients B1 and B2. At the tree
root A, similar vectors of the three different grades of scalar
quantizers are available to code the 4-D coefficient. Assume
an MSE distortion criterion.

Note that the wavelet packet coefficients are the inner
products of the input signal with the respective basis vectors
(see Fig. 4):

) = (109,23, -98. 13]
e} = [-60.81,78.49];
¢ =[98.5];¢5 = [12 o]
2 = [~108.5];

= [93.34, —60.1]

=[23.5].

Fig. 6 shows the rate-distortion curves for all possible basis
subtrees in our example, for the permissible quantization
choices. Thus, for example, ¢! = {109, 23, —98,13] would be
quantized to [108,24, —96,12] (for a total squared-error dis-
tortion of 7.0) with the medium grade (step-size 4) quantizer,
and so on.

VI. FAST SOLUTION

We solve the constrained problem of (2) by converting it
to an unconstrained problem using Lagrange multipliers. This
section spells out the unconstrained approach, and explains
how our problem is a hierarchical extension of that presented
in [4]. A fast pruning algorithm is used to remove suboptimal
subtrees that would not otherwise have been climinated if
we had resorted to a “flattened” version of our problem to
emulate that solved in [4]. Solving the unconstrained problem
for different positive values of the Lagrange multiplier results
in the tracing out of convex hull points of the rate-distortion
curve. The optimal convex hull point we solicit is that with the
minimum distortion while not exceeding the given rate budget.

A. Unconstrained Optimization Approach

Instead of solving the constrained optimization problem (2),
let us consider the following unconstrained formulation. Let us
introduce, for each signal block, the Lagrangian cost functional
corresponding to the Lagrange multiplier A > 0, for basis
subtree S < T and subtree quantizer set @ € Qq(S)

Jo(S,\) £ Dg(S) + ARq(S) 4)

=" [Dy(n) + ARy(n) )

nes
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and similarly (C1,C2) are the HPF/LPF outputs of the Bl input, and (C3, C4) of the B2 input. Sec Fig. 5.

where the last equation is written in terms of the leaf nodes
of the subtree.

We now develop, by a simple extension of Theorem 1 in
[4] to include the ensemble of WP bases S <X T as well
as their associated quantizers Q(S) € Qq(S), an equivalent
unconstrained problem. This formulation is attractive because
it decomposes the original problem into independent parallel
optimizations for each signal block. Mathematically stated, for
a fixed value of ), the unconstrained problem specified below is
solved for S, Q% that minimize the total Lagrangian subtree
cost.

= min min
53T QeQq(S)

Jo- (S5, 2) (6)

[Dq(S) + ARQ(95)]

= min

min min [Dy(n) + ARy(n)].

nes nga(n)

@

The constrained optimization problem of (2) for the single
block (M = 1) case becomes

DQ; (S:) = IIISAID ngn DQ(S) S.t.RQ; (S:) < Rbudget ®
while its unconstrained counterpart from (6) is
Jo: (S5, A) = msin Irgn[DQ(S) + ARg(9)]. O]

The above approach identifies, for a fixed positive A, an
optimal operating point on the convex hull of the compos-
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ite R—D curve for the specified problem. If the original
constrained problem happened to have a budget constraint
that “hits” one of the convex-hull operating points, then
the unconstrained and constrained problems have identical
solutions. Mathematically stated, the equivalence is established
in the following theorem:

Theorem 1: 1f (S, Q%) is the solution of the unconstrained
problem of (9) corresponding to some fixed value of A, then
it is also the solution to the constrained problem of (8) for the
particular case of Ryuager = Rq: (Sy); ie., for this budget
RQ; = RQ; and SQ; = SQ:.

Proof:
Jo: (S5 A) < JxA(S.Q) (10)
Dq: (S5) + ARq. (S3) < Do(S) + ARg(S) (1)

[Ro(S) — Ro; (S1)] (12)
[RQ(S) - Rbudget] . (13)

> >

)
)
Dq; (57) = Dq(S)
Dq; (S3) — Do($)

Since (13) holds for all $ < T and Q € Qg(S5), it certainly
holds for the subsets S < T7,Q € Qa(S) which satisfy
RQ(S) < Rbudget- That is,

RQ(S) < Rbudget for S € SQ S Q (14)
Thus from (13) and (14), since A > 0, we have
Dq:(83) = Dq,(S.) <0 VSe€S8.QeQ (19

i.e., (S, Qr) also satisfies the original constrained optimiza-
tion problem of (8) for the given budget constraint, and
Rq; = Rq: and Sq; = Sq; . U

Note that the above result implies that if we solve the
unconstrained problem of (9) for some A > 0. and if Ryudget
of the constrained problem of (8) happens to be Rg-(S}) of
the unconstrained problem, then the solutions to both problems
are identical.

B. “Flattening” the Problem

Let us define X; to be the set of all (R, D) operating
points corresponding to block ¢ of the signal. Note that
X,; must include all combinations of permissible WP bases
S; = T together with their associated quantization choices
Qi € Qql(S;).

Thus the “flattened” equivalent of our constrained optimiza-
tion problem of (2) is

subject to

Z R(Xz) < Rbudgef . (16)

T

For every S, there exist |Qgq(S)| such (R. D) points; by a
simple inductive argument, it can be shown that for a binary
tree of depth d, there exist about 22" WP bases. Thus although
it is possible for us to “flatten” our hierarchical quantization
problem and solve it using the method of Shoham and Gersho
[4]), this is obviously computationally expensive. We solve the
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problem instead by employing a fast pruning algorithm to be
described in Section V-E.

The flattened version of the problem can however be used
to inherit some of the key properties of the unconstrained
formulation. Some of the key results inherited from [4], as
they apply to our problem, are hence presented as a summary.
The unconstrained allocated rate and distortion values R(\)
and D()\) are monotonic in the Lagrange multiplier A. As
A is swept through all positive real numbers, all the convex
hull points of the composite R-D curve are traced out. See
Fig. 7 for a typical composite -D curve comprising M signal
blocks. Thus A could be interpreted as a quality index as it is
swept from O (highest rate, lowest distortion) to oo (lowest
rate, highest distortion).

C. Finding the Optimal A

With J(A) = D(z) + AR(x) representing the Lagrangian
subcost associated with operating point z of a typical block
(note that the block index i is dropped for convenience) for

quality criterion A, let us introduce the biased Lagrangian cost
W as

W(A) = WA, z*(N) 17
= ‘]*(/\) - /\Rbudget (18)
= (mwin[D(.r) + AR(z)] — )\Rbudge‘) . (19)

Then, following the optimization theory outlined in [17],
we have the following result:
Lemma 1: W() is a concave N function of A.

Proof: See Appendix.
Now, if we find the maximum of W () over all positive A,

W) = W .2* (X)) = max W(A)

s (20)

we have the following result for the unconstrained solution
corresponding to the given budget constraint Ry qget :
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Theorem 2: X* and z*(\*) that maximize W in (20) are
the optimal convex hull face slope and optimal convex hull op-
erating point, respectively, for the unconstrained optimization
problem of (6), for the given budget constraint Rbudget-

Proof: See Appendix.

Thus the above result gives the condition on the desired
operating quality slope which solves the flattened version of
our original problem. By “unflattening™ the above result, we
now develop the unconstrained solution to our best wavelet
packet basis and optimal quantization choice problem. The
optimal slope A* is the solution to

W) = WA, 2" (X)) 1)
= 1}\1;())(( [msin ngn Jo(S, )\)] (22)
= I/I\lgé(( l:msin{ Z mqin[Dq(n) + /\Rq(n,)]}}

nes
- /\Rbudget) . (23)

The trivial generalization to the multiple block allocation
problem (M > 1) is then

M
W) = gxgg(z [rg{ > min[Dy(n) + ARq(nHH

‘ i <
=1 nes;

- /\Rbudget> .

This is then the unconstrained optimization formulation to
our problem, which can be dissected into independent fast
individual optimizations. Thus (24) can be dissected as follows
into 3 optimization operations

(3) (2) 1)
( 2 [m 2 min,, [Dodd)

blocks

+ AR(node)] }] - )\Rbudget> .

1) At first (innermost minimization), select the quantizers
for each leaf node of the fixed W P basis S which mini-
mize D+ AR for fixed operating slope A, independently
for every block.

2) Next (outer minimization), find the best WP basis sub-
tree S (from the entire ON library independently for
each block again for the fixed operating slope A. A
fast dynamic programming based split/merge pruning
operation will be used to accomplish this (see Sec-
tion V-E).

3) Finally (outermost maximization), determine the opti-
mal slope A* for the given bit budget Riudger as the
maximum of W()). Lemma 1 facilitates the use of fast
search methods for finding the optimal A* in an iterative
fashion (see Section VI-B).

24

eaves
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CONVEX HULL OF COMPOSITE
/ OPERATIONAL R-D CURVE

FOR QUALITY CRITERION A,
OPTIMAL OPERATING POINTS= inv min (D + A R)

/ FOR GIVEN BUDGET,
. OPTIMAL OPERATING SLOPE = inv max (W)
2

PLANE WAVE OF
ABSOLUTE SLOPE A

S0 = min(D+RR)
i

W=l - AR
¢ budget

Fig. 8. Geometric interpretation of the problem.

D. Geometric Interpretation

One insight to be made into the unconstrained optimization
problem is that of a geometric approach. It can be shown
that the optimal operating point on the R—D plane for each
leaf node of the tree T for a given slope A is that point in
the collection of R—D points which is first “impinged upon”
by a “plane-wave” of slope —A emanating from the fourth
quadrant of the R—D plane towards the R—D curve in the first
quadrant. This is because the Lagrangian cost J associated
with any admissible operating point can be interpreted as the
y-intercept of the straight line of slope —\ passing through
that point on the operational rate-distortion plane. See Fig. 8.
The minimum Lagrangian function (minimum y-intercept)
is obviously achieved for that point which is “hit” first
by the plane wave of absolute slope A impinging on the
rate-distortion curve. Note also from Fig. 8 that the biased
Lagrangian function W () can be interpreted as the intercept,
on the budget constraint line, of the straight line of slope
—X tangent to the convex hull of the R-D curve. This
geometric interpretation of the problem makes properties like
monotonicity, existence of singular slope values, the concavity
of W, and the R-D convex hull solution both intuitively
pleasing and easy to show using straight-line geometry, though
a more rigorous algebraic proof is provided in the appendix.

E. Finding the Best Basis Subtree

The difference between the flattened approach and the
hierarchical approach is in the search for the best basis subtree.
While a flattened approach entails an exhaustive search of
the entire ON library of WP’s in a “brute force” manner,
the hierarchical approach uses a fast split/merge “pruning”
algorithm to determine the best basis.

A fast dynamic programming technique, similar to the
CMOQW approach [1], is feasible here due to the orthonormal
property of the WP basis family, that enables the signal space
spanned by an arbitrary subtree rooted at internal node n of the
tree to be identical to the space spanned by the twin subtrees
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rooted at the two branches emanating from node n. To be
specific, let nparent = nj, i.e., Nparent 1S the jth node of the
ith scale of the tree T. Its two children are ncpjlq; = nﬁll
and ncpjlg2 = ng; . Then, because of the ON property, the
subtrees rooted at Nchild1 and Nenilg2 cover disjoint halves of

the RN /2* signal space spanned by their parent node nparen:.-
This allows a direct quantitative one-to-one comparison
between the N/2! basis coefficients {¢ %} associated with the
basis subset {b%} of node ¢ with the (2 x (N/(2641))) co-
efficients {{(”2?1 1} {c’“}} associated with the basis subsets
{bl“l} and {b"“} of nodes ¢, and ¢, resepectively. The
“split/merge” decmon will be based on the option which leads
to a cheaper Lagrangian cost, as spelled out in Fig. 3.
Assume known the optimal subtree from node n “onwards”
to the full tree-depth log N. Then by Bellman’s optimality
principle [18], we know all surviving paths passing through
node n must invoke this same optimal “finishing” path. There
are two contenders for the “surviving path™ at every node of
the tree, the parent and its children, with the winner having the
lower Lagrangian cost. Using this, we begin at the complete
tree-depth n = log N and work our way towards the root
of the tree, using the above split/merge criterion at each node.
This decision (or “path”) is remembered and used to determine
the best path when applying the same pruning criterion on the
branches, which process is repeated till the root is encountered.
At this point, the best basis is known.

VII. COMPLETE ALGORITHM

The stage is now set to integrate the results of the previous
two sections to formulate the optimal algorithm. This will
be done in two phases. First, the flowchart of the optimal
algorithm for a given operating slope A will be detailed,
followed by a description of the hunt for the optimal operating
slope A*. Note that the algorithm is applied independently on
each signal block to determine the best wavelet packet basis
corresponding to that subblock (for a given \).

A. Initialization

Prior to the actual pruning operation, a one-time fixed cost of
gathering the statistics enlisted in Steps 1 and 2 below must be
endured. Associated w1th every node n; of T'is a data structure
of the form: {R’ Dl J%, split(n?)}. The first three members
refer to the rate, dlstortlon and Lagrangian cost associated
with the optimal (for a given /\) subtree from n); onwards, i.c.,
the optimal subtree rooted at nj, while the last member of the
data structure, split (n ) is a binary variable whose meaning
(yes or no) reflects the decmon of whether or not it is optimal
to split the node into its children branches.

Step 1: Generate the coefficients {L;} for the entire WP
family.

Step 2: Gather the given quantizer set dependent (R (n).
Dgy(n)) values for all the nodes n € T ¥V q € gq(n), to
generate the R versus D points for each node.

Phase I: Optimality For A Given Operating Slope: Phase |
of the algorithm is run for a given slope value A, and could be
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considered a subroutine called by the Phase II, described later
in the section, for the fixed budget allocation problem:

Step 3: For the current A, populate all the nodes n of
the tree with their minimum Lagrangian costs J, (), or
equivalently J;()\) when referring to the jth node at scale
i e, Ju(A) = ming[Dy(n) + AR, (n)].

Step 4. Initialize i — d, where d
signal block tree-depth. For n = n
that minimizes J,,(A) initialize

log N is the maximum
, if ¢} is the value of ¢,

R;! - R;? (where R? = Rg: (n))
D;l — D}.i (where D;’ = Dg: (n))
2 4
J]- - JJ' . (26)

Step 5: 11— 1.1f i <0, go to Step 8.
Step 6: ¥V j =1,2,---,2" at the ith tree level:
i3 < 37 () + ).
then{split(n}) — NO:R — Rj: D} — Di; Ji — Ji}
else{split(n}) — YES; R — Ry¥!| + Ryt

25
D'L — D1+11 +Dé+lv 7i — Jz+l H'»l}
J J :

Step 7: Go to Step 5.

Step 8: Starting from the root ng, and using, in a linked-list
fashion, the node data-structure element split (node), selected
optimally for all the nodes of 7', carve out the optimal subtree
5*(A) and its associated optimal quantizer choice Q*(\) €
Qa(S*(N)). Also readily available at the data-structure for
root node ng are Rg-(S*) = RY and Dg-(S*) = DY, the
rate and distortion of the optimal subtree S*()).

Note that it is possible to directly incorporate into the
pruning algorithm the cost of segmentation (in terms of
overhead bits of the subtree map to be sent), if an a priori map-
representation scheme is available. For example, if the subtree
structure costs one bit per merge decision, this bit could be
included in the Lagrangian cost comparison of the children
nodes with the parent node in Step 6 of the Phase I algorithm
outlined above. However, in our generalized algorithm, no a
priori map-coding scheme is assumed, and Rpudget is used
for pure coding expenditure without any overhead expenses,
which may be minimized using entropy coding of the tree-
map if necessary. In our image coding applications, we found
the overhead to represent a negligible proportion of the total
budget. For example, for an image block size of 128 x 128
using a WP decomposition of depth 4 (resulting in 8 x 8 leaf
nodes), the cost of sending the tree map is less than 0.000625
bits per pixel, certainly negligible for most applications!

B. Finding the Optimal Operating Slope

The problem of picking the optimal slope value for a
given budget criterion Rpyqget is the subject of discussion
in Phase II of the algorithm; the iterative invocations of the
Phase 1 subroutine in search of the optimal operating slope
Aopt for the given Ry,qget, Will be described in this section.
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As was shown in Section V, due to the concavity of W(X)
in A (see Fig. 9), and since our optimal operating slope A is
max~1 (W), we can find our optimal operating point using
a fast convex search algorithm like Newton’s method or
bisection methods [19]. Equivalently stated, we are interested
in the zero-crossing of the derivative of W,0W/d\. Recall
that

W) = (Z Ir;g)gl[D(mi)HR(ml)}) — ARpudger

which implies that, at nonsingular values of A,

dW/(?/\ = Z R:()\) - Rbudget (25)
where R}()) is the rate associated with the optimal sub-
tree/quantizer choice for block i. Due to the discrete nature of
our problem, X is singular at only a finite number of points (see
Fig. 9). Also, as was developed in Theorem 2 (see appendix),
the optimal slope A\* which maximizes W corresponds to a
singular value. From (25), at nonsingular values of A < A%,
we have 3=, RY(A) > Rbudget, While for nonsingular values of
A> MY RE(A) < Riudger- This then leads to the iterative
fast convex search algorithm to be described.

As with most iterative solutions, the choice of a good initial
operating point is the key to a fast convergence. Assume we
have judiciously chosen two values of A, A¢ and A, with
A; < A, which satisfy the relation:

ZR:()HJ < Rhudget < ZR?(/\Z) .

Note that failure to find any A;, A, which satisfy the above
inequalities means that the given problem is unsolvable; i.e.,
the Riudger is inconsistent with the given sets of quantizers.
A conservative choice for a solvable problem would be A =
0, Ay = <.

Phase II: Iterating towards the optimal operating point:
Now the following “main” algorithm can be used to iteratively
call the “subroutine” algorithm of the previous section:

Step 1: Pick A; < Xy such that
ZRZ()‘u) < Rpudget < Z R} ().

If the inequality above is an equality for either slope value,
stop. We have an exact solution. Otherwise, proceed to Step 2.

Step 2: Anexe — |(X, (D7 (M) = DI QW) /(1R (M) -
R*(A)])| + ¢, where € is a vanishingly small positive number
picked to ensure that the lower rate point is picked if Anext
is singular slope value.

Step 3: Run the Phase I optimal algorithm for Apext-
= if {z R} (Anext) = Z Rf(/\“)}, then stop. A™ = Ay

= else if (Z R:(/\next) > Rbudget>~, >‘l - Anext .

Go to Step 2.
= else Ay — Anext- GO to Step 2.
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if ) is non-singular,
_88%?_ = ;R(i) - Rbudget
ifA <X
[%R ® ]>Rbudget
’ > A
© [
}\10 X}

ifa > X
%R ® sRbudget

Fig. 9. Concavity of the biased Lagrangian functional W (A) and mathemat-
ical justification for fast bisection algorithm.

Thus starting from a known initial interval engulfing the
desired operating slope, the search intervals are made suc-
cessively smaller, exploiting the convex relationship of both
global rate and global distortion with respect to the operating
slope )\ until convergence is achieved. In Step 2 above, the
convexity property is exploited in tightening either the upper
or the lower bound at the (i+1)" iteration to ACFD =
l[(AD)/(AR)]"|, which provides a tighter bound around A*
than available at the i*" iteration.

VIII. Toy EXAMPLE

See Fig. 10 for a plot of the convex hull to the operational
rate-distortion curve for the given problem. Shown explicitly
are the optimal quantizer and the best basis choice for each
operating point, which corresponds to singular values of A,
whose sweep for 0 to oo results in the tracing out of all convex
hull points. The budget constraint line of 21 bits is obviously
an inaccessible convex hull solution, and one has to settle
for the convex hull operating point using 20 bits. Note also
the nonmonotonic nature of the sequence of the depths of the
best bases subtrees as one sweeps A through all positive real
numbers.

Let us first show an example of how the Phase I algorithm
works for A = 10 (to pick a nice number) and show how it
Jeads to the lowest quality convex hull point of Fig. 10, which
is picked for all values of A > 5.43:
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Fig. 10. Composite R-D curve for toy example shown with best basis

and best quantizer choices for all convex-hull points, and with optimal tree
structure for the given budget constraint. Note the nonmonotonicity of the
R-D characteristics with tree depth, i.e., nonconformance with the Chou et
al. {6] assumptions.

1) Populate the tree with the minimum of all the Lagrangian
cost functionals for A = 10 as outlined in Phase I of the
algorithm for each node A, B1, B2, C1, C2, C3, and C4
to get:

J. = 231 (achieved with quantizer Q3)
Jp1 = 92.5(Q3); Jp2 = 102.3(Q3)
Je1 = 46.25(Q3); Jeo = 52.25(Q3):

Jes = 52.25(Q3): Jeg = 60.25(Q2).
Initialize ¢+ = 2: Jop = 46.25: Jeo = 52.25

Jos = 52.25:  Jey =60.25.
3) i = 1: Since Jp1 < Jeu + Jez split(B1) — NO
Jgo < Jes + Jeg. split(B2) — NO

=

Jp2 = Jpo.
4) i = 0; Since Jy > j31 + .732. split(A) — YES
Ja=Jp1+ Jpa.

jBl = Jp1:

We thus have our optimal basis subtree (with quantizer
choice) for this value of ), as shown as the lowest rate
convex hull point of Fig. 10. We now explain in detail the
search for A* for the toy problem with a coding budget
Rpuager = 21 bits. Refer to Fig. 10.

1) Intialize A\ =0; A = .
R*()‘u) = 32; R*()\I) = 16.
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34.7-0
2) /\ncxt = m+€:2_17+6
AW =217m AD = .
3) Nt = HTZ30
next 24— 16 + € 3.96 + €
R*()‘next) =20< Rbudget =21 :
=2V =217 AP =3.96.
12.95 - 3.0
4) Anext = 91920 +e=248+¢

R*(next) = R*(A\0) = 20.

We have converged! = A* = 2.48; D(A*) = 12.95; R(\*) =
20.

IX. IMAGE CODING APPLICATIONS

We describe two image compression applications, one a
quadtree segmentation using a 2-D DCT basis family in a
“hierarchical” JPEG [11] coding environment, and the other
involving wavelet packets using the Daubechies D4 [20] set
of wavelet filters.

A. DCT Quadtree Application

The framework of a quadtree structure using a family of
DCT bases was used to select the best basis. The coding
was performed in a JPEG-like environment using an MSE
distortion criterion. In order to have the quantizers adapt to the
signal’s nonstationarities, classified quantizers were chosen as
the admissible set, similar to the VQ application of [21]. Four
quantizer classes were used, optimized for 1) “typical” image
blocks with low frequencies weighted much higher than the
perceptually less sensitive higher frequencies, like the JPEG
suggested matrix; (2) horizontal edges; (3) vertical edges; and
(4) image blocks with a “white” frequency spectrum, showing
no discernible favoritism toward any specific orientation.

B. Coding Description and Simulation Results

In keeping with perceptual requirements [22}, the admissible
classes of quantizers described above were constructed for
each of three hierarchical levels of the DCT basis tree: 4 X 4,
8 x 8, and 16 x 16 blocks. This is equivalent to a parallel
pruning of 16 x 16 independent subblock trees of maximum
depth 3. The optimal pruning algorithm of Section VI was
used, and “pseudo-JPEG” coding algorithms were followed for
the non-8 x & blocks,’ i.e., DCT transformation, quantization
using classified quantizers, zigzag scanning, and Huffman
coding of the zero runlengths. Fig. 11 shows comparisons of
the adaptive DCT-quadtree coder versus the baseline JPEG
coder plotting the peak signal-to-noise-ratio (PSNR) defined as
10log,([255% /(M SE)] versus bpp (bits per pixel) for some
typical test images used in the image processing commu-
nity. The results are compared with a typical “static” JPEG
coder [11].

In formulating the pseudo-JPEG algorithm for the non-
8 x 8 blocks, the same default Huffman coding table was

3The standard JPEG algorithm is applicable only to 8 x 8 blocks.
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Fig. 11. Comparison of adaptive depth-3 block DCT basis quadtree coding scheme with nonadaptive JPEG coding scheme for the “Barbara” and “mit” images.

used as outlined in the baseline JPEG specification for 8 x
8 blocks. For typical test images, we found that in our
coding environment, the adaptive DCT-based quadtree coder
outperforms the standard static JPEG coder by about 1.5-2dB
at typical bit rates, or alternatively, by a 15%—-25% reduction
in bit rate at typical PSNR values. For difficult images like
“mit” and “Barbara,” our adaptive scheme outperforms JPEG
by over 2 dB at fixed bit rate, or equivalently about 25%-35%
compression advantage at fixed SNR, over an entire range of
bit rates of interest. Fig. 12 shows a subjective comparison of
the optimal adaptive JPEG quadtree segmentation scheme and
the static standard JPEG scheme, using a blowup of a portion
of the “mit” image to help illustrate the point.

C. Wavelet Packet Application

Two-dimensional separable length-8 orthonormal Dau-
bechies D4 wavelet sets of filters [20] were used for this
application. Optimal trees were grown to a maximum depth
of 4 over both (i) the entire image (512 x 512) and (ii) the
image divided into nonoverlapping 128 x 128 image blocks,
resulting in full-depth leaf nodes of size 32x 32 for (i) and 8 x8
for (ii). Periodic extension was used at the block boundaries
to preserve orthonormality. Scalar quantizers with step sizes
that halve with succeedingly deeper tree levels were chosen
as members of the admissible set with the root’s set being
{10, 40. 70, 100}. First-order entropy was used as the bit rate
measure, as entropy coding was assumed to follow the scalar

quantization, and an MSE distortion criterion was used. The
use of more sophisticated entropy coding methods (e.g., run-
length coding) could alter the comparative performance, but
not likely substantially.

Fig. 13 shows the operational R—D curves for the “Barbara”
image as the quality index A is swept through all positive
real numbers, for (a) the optimal wavelet tree, (b) the optimal
512 x 512 wavelet packet tree, and (c) the optimal combination
of 16 128 x 128 wavelet packet trees. As can be seen,
both (b) and (c) perform substantially better than (a) (about
3—4 dB in PSNR for bit rates of interest or alternatively about
25-30% reduction in bit rates for desired PSNR’s). Also,
segmenting the original image into smaller blocks provides
better adaptivity and better performance (curve (b) versus
curve (c)). Fig. 14 shows a subjective comparison between (a)
and (c) for the “Barbara” image at 0.93 bpp, with the objective
comparisons showing 32.8 dB and 36.5 dB respectively. Note
the distinct improvement in performance of the optimal WP
tree over the optimal wavelet tree in the high frequency stripes
of Barbara’s trousers, as shown in the blowup.

D. Optimal Adaptive Wavelet-Packet Split

It must be mentioned that though we use 128 x 128 blocks
for the wavelet packet application of Section IV-C, this may
not represent the optimal block segmentation for the image,
as described in the work on optimal orthonormal tiling of the
time-frequency plane in [16], [23]. The optimal split involves
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(b)

Fig. 12. Subjective results for (a) JPEG (PSNR = 34 dB) and (b) adaptive depth-3 block DCT basis quadtree coding scheme (PSNR = 37 dB) for the
“mit” image at a bit rate of 1.37 bits per pixel.

a “double tree” algorithm. In summary, this would involve merging of the applications of Sections VII-B and VII-A
growing a quadtree segmentation after finding the best wavelet (without the DCT basis tree). This would then jointly provide
packet basis trees for all desirable block sizes, i.e., a conceptual  the optimal split as well as the optimal wavelet packet tree for
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Fig. 13.  Comparison of optimal wavelet packet decomposition scheme with

optimal wavelet decomposition scheme for the Daubechies D4 set of wavelet
filters and a 512 x 512 portion of the “Barbara” image. Curve (a) is the wavelet
case, (b) the signal tree (512 x 512) wavelet packet case, and (c) the 16-trec
(each 128 x 128) wavelet packet case. MSE and first-order entropy are used
as the distortion and rate measures. The admissible quantizer sets for the WP
tree nodes are scalar quantizers which halve in step-size with succeedingly
deeper tree levels, with the set at the root being {10.40. 70. 100}.

each split, as in [16]. As shown in [23], the complexity for
the double tree algorithm is O(N(log N)?), while that of the
wavelet packet algorithm is O(N (log N)).

X. CONCLUSION

We have shown a fast R—D optimal scheme for coding
adaptive trees whose individual nodes spawn off descen-
dents forming a disjoint and complete basis cover for the
space spanned by their parent nodes. The scheme presented
guarantees operation on the convex hull of the operational
R-D curve, and uses a fast dynamic programming prun-
ing algorithm to drastically reduce computational complexity.
Applications for this coding technique include the CMQW
[1] generalized multiresolution wavelet packet decomposition,
iterative subband coders, and quadtree structures. Applications
to image processing involving wavelet packets as well as DCT
quadtrees have been presented with good results.
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APPENDIX
Proof of Lemma 1:
Proof: Denoting A3 = 61 + (1 — )2, where 0 < § <
1, we have

W(As) = W(BA; + (1 — 8)As)

gg{l {D(z) + [0A1 + (1 — O)A)R(z) — AsRe}

I
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(b)

Fig. 14. Subjective results for the (a) optimal wavelet tree (PSNR =
32.8 dB) and (b) the optimal wavelet packet tree for thc “Barbara” image
(512 x 512 portion) (PSNR = 36.4 dB) at a bit rate of 0.92 bits per pixel
for the Daubechies D4 set of wavelet filters. (c) a blowup comparing the two
schemes for the stripes on Barbara’s trousers.

> gél{] 0[D(z) + MR(z) — MRy
+ irél{l (1 - )[D(x) + A2 R(x) — A2Rp]
=W (A1) + (1 = )W (X2). O
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(Continued)

Fig. 14.

Proof of Theorem 2: Denote by X’ the slope of the convex
hull face which “straddles” the budget constraint line on the
R-D plane. See Fig. 7. Let us consider the convex-hull face
of slope X as a candidate for \* = max~1 (W())).

For A < ), invoking the “lower rate” operating point on
the convex hull of slope X, z¢

W) - W) = ;rél‘I(I [D(z) + AR(x) — ARy)

— [D(z¢) + N R(x¢) — N Ry
[D(xe) + AR(z¢) — ARy

= [D(ze) + N R(ze) — N Ry]
< (A= X)(R(ze) — Ry) <0.

IA

Similarly, for A > X, invoking the “higher rate” operating
point on the convex hull of slope X', z.,, we have

W) = W(N) < (A= X)(R(z,) — Ry) 0.

Thus for all positive values of A\, W()) < W(A*).

But, by virtue of Lemma 1, we know that W(X), being
concave N, has a unique maximum value which occurs at a
singular slope. (If it were nonsingular, then there exists an
€ > 0, no matter how small, for which W (\* + ¢) - W(A\*) =
A*e > 0, which contradicts the definition of W (\*)).

Thus X is indeed this unique singular maximum, with the
optimal convex hull operating point obviously being ;. O
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