Computing 49, 339-347 (1993) Com .
puting

© Springer-Verlag 1993

Printed in Austria

Iterative Toeplitz Solvers with Local Quadratic Convergence
E. Linzer, Yorktown Heights and M. Vetterli, New York

Received July 22, 1991; revised October 13, 1992

Abstract — Zusammenfassung

Iterative Toeplitz Solvers with Local Quadratic Convergence. We study an iterative, locally quadratically
convergent algorithm for solving Toeplitz systems of equations from [R. P. Brent, F. G. Gustavson and
D.Y.Y. Yun. “Fast solution of Toeplitz systems of equations and computation of Padé approximations”,
J. Algorithms, 1: 259295, 1980]. We introduce a new iterative algorithm that is locally quadratically
convergent when used to solve symmetric positive definite Toeplitz systems. We present a set of numerical
experiments on randomly generated symmetric positive definite Toeplitz matrices. In these experiments,
our algorithm performed significantly better than the previously proposed algorithm.

AMS (MOS) Subject Classifications: 65F10, 65B99

Key words: Toeplitz, iterative methods, steepest descent, quadratic convergence.

Iterative Toeplitz Solver mit lokal quadratischer Konvergenz. Wir studieren einen iterativen, lokal
quadratisch konvergenten Algorithmus fiir die Lésung von Toeplitz-Systemen von Gleichungen von
[R. P. Brent, F. G. Gustavson und D. Y. Y. Yun, “Fast solution of Toeplitz systems of equations and
computation of Padé approximations”, J. Algorithms, 1:259-295, 1980]. Wir fiihren einen neuen
iterativen Algorithmus ein, der lokal quadratisch konvergent ist, wenn er fiir positiv definite Toeplitz-
Systeme gebraucht wird. Wir prisentieren eine Anzahl von numerischen Experimenten mit zufalls-
generierten, symmetrischen, positiv definiten Toeplitz-Matrizen. In diesen Experimenten ist unser
Algorithmus entscheidend besser als der frither vorgeschlagene Algorithmus.

1. Introduction

An n x n matrix A is Toeplitz if it is constant along its diagonals; that is, if
A; ;= A,_, j-,.Inthis paper, we consider the case when A is symmetric and positive
definite (hereafter, s.p.d.).

The problem of solving a system of linear equations of the form Ax =y, where A
is an s.p.d. Toeplitz matrix, is ubiquitous in engineering and physics [1,2]. The
structure of A allows one to find x with direct methods that require many fewer
operations than the O(n®) used in Gaussian elimination. So called “fast”, or O(n?)
[2,3,4,5,6], algorithms, most notably the Levinson recursion [4], exist for this
problem. More recently, several “superfast” algorithms have been introduced that
reduce the operation count to O(nlog?n) [7,8,9,10].

Strang [11] has suggested using iterative methods for the solution of Ax =y. (His
specific suggestion was to use the preconditioned conjugate gradient method. See

340 E. Linzer and M. Vetterli

[12] for an early mention of an iterative representation of A~1.) In the “ordinary”
iterative method, we repeatedly solve

Mx® = (M — A)x*D 4y

for some easily invertible matrix M that is “close” to A. If it is close enough, the
vectors x* will converge to x. If A is symmetric and positive definite, the ordinary
iteration can be accelerated in many ways; for example, with the use of the steepest
descent or conjugage gradient algorithms. See [13,14,15,16,17] for some new
iterative methods for solving Toeplitz systems of equations.

In standard iterative algorithms and the algorithms discussed in this paper, each
iteration requires the multiplication of a vector by A, the inversion of the “M”
system, and, possibly, some inner products. The most common application of
iterative algorithms is to sparse systems, where a matrix-vector multiplication is
inexpensive. A similar situation prevails with dense Toeplitz matrices, because the
matrix-vector product Aw can be computed quickly with fast Fourier transforms
(FFT’s) in O(nlogn) operations [2, 18].

Let L(x) be a lower triangular Toeplitz matrix with first column x. Let % be a vector
with the components of x listed in reverse order. Also, let the first column of A™*
be ¢ = (by,b*)". The Gohberg-Semencul factorization expresses the inverse of a
Toeplitz matrix in terms of the first row and first column of the inverse [19,20].
Because A~! is symmetric, we can write A™! as a function of ¢:

= (1) (3) 16 6) &

The Gohberg-Semencul factorization is particularly convenient because it shows
how to compute A™'w from ¢ with O(nlogn) operations using FFT’s. Note that
because A is s.p.d., we must have b, > 0.

Many direct algorithms first compute ¢ and then use the Gohberg-Semencul
factorization to compute x. In the first paper that presented an O(nlog? n) algorithm
to solve Toeplitz systems, the authors also presented a method based on iterative
refinement to improve the computed value of the first row and first column of the
inverse of Toeplitz matrix [10]. We will call the symmetric version of that method
Dynamic Iterative Improvement (hereafter, DII). As stated in [10], DII is locally
quadratically convergent. V. Pan modified DII to develop a fast version of Newton’s
iteration for Toeplitz-like matrices [15].

The renewed interest in iterative Toeplitz solvers warrants a second look at DII,
which we review in the next section. In Section 3, we present a new algorithm,
Dynamically Conditioned Steepest Descent (hereafter, DCSD), to compute the
Gohberg-Semencul factorization of A™'. Like DII, DCSD is locally quadratically
convergent.

In section 4, we present a set of numerical experiments that is designed to compare
the performance of DII and DCSD. In these experiments, DCSD behaved signifi-
cantly better than DII.

Iterative Toeplitz Solvers with Local Quadratic Convergence 341
2. Iterative Improvement

DII is conceptually simple. We wish to iteratively compute c¢. Denote the approxi-
mate solution at the k™ step of the algorithm as ¢*, We begin with the approxima-
tion ¢/?. This means that we have an approximate solution to the equation

Ac=e,, 2)
where e, = (1,0,...,0).

- N((tg,) = %[L C:) v (Lr) e <g> o <2>] '

The approximation ¢!” can be substituted into the Gohberg-Semencul formula, (1),
to obtain N(c?), an approximation to A™*. Iterative improvement is then used to
obtain a better estimate of ¢, which in turn gives a better estimate for A™*. The
process is repeated until the residue (measured in some norm) is sufficiently small.
The algorithm is summarized below. It is the same algorithm as the algorithm given
in [10], except that the we have removed computations that are made redundant by
the fact that A is symmetric (the algorithm given in [10] is for general Toeplitz
matrices).

Algorithm 1 (Dynamic iterative improvement)

Input ¢?
k=1
r? =e, — Ac®
While |[r*~V|| is large
¢® = =D 4 N(ck=D)pk-D
¥ =e, — Ac®
k=k+1

In standard iterative solution methods [3, 18], we estimate A™! once and then do
not improve this estimate. When these algorithms converge, they converge linearly;
the norm of the error is multiplied by a constant (less than unity) during each
iteration. The authors of [10] note that the fact that in DII the estimate for A~!
improves at about the same rate as the estimate for the solution vector implies that
we will have quadratic convergence. We now give a formal statement and proof of
quadratic convergence.

Theorem 2.1. Define the error at the k™ iteration of DII as s® =¢® —c. If A is
s.p.d.,then 36 > 0 and M < oo s.t. if |s'?|,; < & then ||s®|, -0 as

Is®* 2y < MIs®i.
Proof summary: With the identity,
Ac=e,

and (1) we can obtain

342 E. Linzer and M. Vetterli

1“2 < 61ALL 7 181 + O(Is®I1D),)

where
_ lelly
=,
(See [17] for details.) Choosing M > 6| A||,t* proves the theorem. [

The parameter T can be bounded in terms of the reflection coefficients generated by
the Levinson algorithm; see [21, lemma 2.4].

3. Steepest Descent

The iterative solution of a symmetric positive definite system may be obtained by
the use of the steepest descent algorithm. The strategy in steepest descent is to
minimize the quadratic form ¢(x) = (x — A~'y)'A(x — A™'y), which yields the mini-
mum value of 0 at x = A~'y. If we find x*) by moving from x*~" along — Fg(x*™V),
we obtain the steepest descent algorithm [3]:

Algorithm 2 (Steepest descent)

Input x©

k=1

r® —y — Ax©

While [[r*~V|| is large
a(k) — r(k—l)tr(k—l)/r(k—l)tAr(k—l)
x® = k=1 4 50 61
PR — ple=1) _ 0 A plk=1)

k=k+ 1

Let A,.4(P) (resp., 4,;n(P)) be the largest (resp., smallest) eigenvalue value of P. The

iterates x® will satisfy
Vo) < oY W =) 4)
«/Kz)+ 1
where 1,(A) = |A[[,|A™ |, = Amax(A)/Amia(A) is the [, norm condition number of
A. Although (4) does not guarrantee convergence, it can be shown that steepest
descent (unlike iterative improvement) converges globally when used to solve s.p.d.
systems; see [3; page 363].

We now borrow the idea of preconditioning from the preconditioned conjugate
gradient method [3, 18]. The idea is to compute instead

Algorithm 3 (Preconditioned steepest descent)

Input x©
k=1
r® =y — Ax©
While |[r*~Y)| is large
Solve Mz* ™1 = pk-1)

Iterative Toeplitz Solvers with Local Quadratic Convergence 343

d(k) - Z(k—l)tr(k—l)/z(k—l)tAz(k—1)

x® = x*=1) 4 505 k-1)

r0 — pk=1) _ o0 A 7=1)
k=k+1

for some easily invertible symmetric positive definite matrix M that approximates
A. This is mathematically equivalent to solving the transformed system Ag = ¥,
where A = M""2AM 2, & = M*2x, and b = M~"2b. It is easy to see that #(&) =
#(x). If A is chosen so that x,(A) < K,(A), the constant in (4) is reduced.

The ideas of the previous section can be used to speed up the convergence of the
steepest descent algorithm. We use steepest descent to compute the first column of
A~ As this gives us an approximation to A~*, we can use N(c* ") instead of M~*.
The resulting algorithm is

Algorithm 4 (Dynamically-conditioned steepest descent)

Input ¢@
1% =¢, — Ac®
k=1
While ||r*~V]| is large
2571 = N(c*=D)pk~1)
a(k) — z(k—l)tr(k—1)/z(k—1)tAz(k—l)
¢® = k1) 4 50 4k~1)
F®0) — pk=1) _ 00 A5 k=1)
k=k+ 1.

As with DII, we define the error at the k' iteration as s® = ¢® — ¢. Define the
vector A-norm as ||x||, = «/x’Ax. Then s* and c¢® are related by

s 4 = /8, ©)

s0 (4) can be used to bound the A-norm of the error at each step. As with Algorithm
1, DCSD is locally quadratically convergent.

Theorem 3.1. If Aiss.p.d.,then36 > 0and M < oo s.t.if ||s@|| o < S then ||s®], » 0
as
Is**Vllx < Ms®%.

Proof summary: By using (1), (4), and (5), it can be shown that
[591a < 4/nTlAlL [AT] 1, (A) 813 + O(Is* ™)) ©)

(See [17] for details.) Equation (6) shows that DCSD is locally quadratically
convergent. []

If the parameter o®, taken as
a(k) — Z(k—l)tr(k—l)/z(k—l)tAz(k—l), (7)

is set to “1”, then DCSD becomes the same algorithm as DIL If N(c*~1)is a positive
definite matrix, then the choice of «® given by (7) is optimal, in the sense that this
choice yields the smallest s* in the A-norm.

344 E. Linzer and M. Vetterli

Nonetheless, when comparing the error bounds for DII, (3), and DCSD, (6), it is
not clear, in general, which bound is stronger. As these equations are also only upper
bounds, we conducted some numerical experiments to compare DCSD and DII.

4. Numerical Experiments

In this section, we present some numerical experiments on random s.p.d. Toeplitz
matrices to judge the performance of DII and DCSD.

Denote by I the n x n identity matrix. The first type of matrix that we considered
is A(k). To generate this matrix, we first compute n random numbers, aq, ..., a,_;,
with a uniform distribution on [—1,1). We then generate a symmetric Toeplitz
matrix A with first row (aq,4a,,...,a,_,). The matrix A(k) is defined by

A(k) = a(A + BD),

where o and f are chosen so that x,(A(k)) = k and the main diagonal elements of
A(x) are equal to “1”.

The second type of matrix that we considered is B(x). This matrix is similar to A(x),
except that the values of aq, ..., a,_, are chosen randomly on [0, 1).

The experiments were performed as follows. We calculated the exact solution to (2)
and a random vector with [, norm y. The random vector was added to the exact
solution to obtain the initial approximate solution. The experiments were per-
formed for k € {10, 100, 1000, 10000, 100000} and y € {.001, .003, .1, .3, 1, 3, 10}.

Table 1. Number of iterations needed by DII and DCSD for the matrices A(k). The initial guess
is the correct solution plus an error vector with [, norm y

Kk =10 Kk = 100 K =103 k= 10* Kk = 10°
y DCSD | DII | DCSD | DII | DCSD | DII | DCSD | DII | DCSD | DII
.001 2 3 2 3 3 3 2 3 2 2
.003 3 5 3 4 3 4 3 4 3 *
.01 3 * 3 9 4 10 4 6 3 4
.03 4 * 4 * 4 * 4 7 3 4
1 5 * 5 * 18 * 5 * 7 *
3 6 * 7 * 6 * 16 * 26 *
1 15 * 15 * 12 * 24 * 42 *
3 18 * 19 * 25 * 33 * 7 *
10 29 * 29 * 25 * 40 * 80 *

* The errors were so large that the algorithm resulted in overflows.

Iterative Toeplitz Solvers with Local Quadratic Convergence 345

For both A(x) and B(x), a new random matrix and random vector were calculated
for each combination of x and 7.

The experiments were performed on matrices of size 8192 x 8192. The algorithms
were allowed to run until either the I, norm of the residual was less then 107° or
the errors were so large as to cause overflows.

The results of the experiments on the matrices A(x) as shown in Table 1. For large
¥, DII resulted in overflows, but DCSD never did. When DII converged, it used the
same number of iterations as DCSD on two occasions. Otherwise, DII needed more
iterations than DCSD to reduce the norm of the residual to 1072,

The results of the experiments on the matrices B(x) are shown in Table 2. Here, the
performance of DCSD is slightly improved but the performance of DII is much
worse. DII converged only once, and then it needed 34 times as many iterations as
DCSD.

Table 2. Number of iterations needed by DII and DCSD for the matrices B(x). The initial guess
is the correct solution plus an error vector with I, norm y

K =10 K = 100 K =103 K = 10* K =10°

y DCSD | DIl | DCSD DII | DCSD | DII | DCSD DII | DCSD | DII
.001 2 7 3 * 3 * 3 * 3 *
.003 3 * 3 * 3 * 3 * 3 *
.01 3 * 3 * 4 * 4 * 4 *
.03 3 * 4 * 4 * 4 * 4 *

.1

ER

ﬁ._l\ 6 * 16 * 9 * 11 * 14 *
3 6 * 18 * 21 * 27 31

]

10 15 * 29 * 31 * 29 * 27 *

* The errors were so large that the algorithm resulted in overflows.

5. Discussion

A method for combining DCSD and a globally convergent algorithm can be found
in [17]. When this method was used to combine DCSD with the preconditioned

346 E. Linzer and M. Vetterli

conjugate gradient method of Strang [11], the algorithm that resulted performed
about as well as Strang’s algorithm alone. The reason that the combination did not
work better than Strang’s algorithm alone is that Strang’s algorithm converges
slowly during the first few iterations, but as the algorithm progresses the rate of
convergence increases [11, 22]. Therefore, by the time the errors are small enough
for DCSD to be an effective algorithm, Strang’s algorithm can anyway produce a
very accurate solution quickly.

To obtain a fast iterative algorithm to solve Toeplitz equations with DCSD, it is
desirable to have globally convergent algorithms for Toeplitz systems that produce
fairly accurate solutions after a very small number of iterations. Algorithms with
this property, as well as their use with DCSD, are described in [17] and will be
reported on in a future paper by the first author.

References

[1] Bunch, J. R.: Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Stat.
Comput. 6, 349-364 (1985).
[2] Blahut, R. E.: Fast algorithms for digital signal processing. Reading, MA: Addison-Wesley 1986.
[3] Golub, G. H., Van Loan, C. F.: Matrix computations. Baltimore, MD: Johns Hopkins 1983.
[4] Levinson, N.: The Wiener rms error criterion in filter design and prediction. J. Math. Phys. 25,
261-278 (1947).
[5] Trench, W. F.: An algorithm for the inversion of finite Toeplitz matrices. J. SIAM 12, 512-522
(1964).
[6] Cybenko,G.,Berry, M.: Hyperbolic Housholder algorithm for factoring structured matrices. SIAM
J. Matrix Anal. Appl. 11, 499-520 (1990).
[7] Ammar, G.S., Gragg, W. B.: Superfast solution of real positive definite Toeplitz systems. 9, 61-76
(1988).
[8] Ammar,G.S.,Gragg, W. B.: The generalized Schur algorithm for the superfast solution of Toeplitz
systems. In: Pindor, M., Gilewicz, J., Siemaszko, W. (eds.) Rational approximation and its applica-
tion in mathematics and physics. Springer 1986.
[9] Bitmead, R.R., Anderson, B. D. O.: Asymptotically fast solution of Toeplitz and related systems
of linear equations. Linear Algebera Appl. 34, 103-116 (1980).
[10] Brent, R. P, Gustavson, F. G, Yun, D. Y. Y: Fast solution of Toeplitz systems equations and
computation of Padé approximations. J. Algorithms 1, 259-295 (1980).
[11] Strang, G: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74, 171-176 (1986).
[12] Rino, C.: The inversion of covariance matrices by finite Fourier transformations. IEEE Trans.
Inform. Theory 16, 230-232 (1970).
[13] Chan, R. H: The spectrum of a family of circulant preconditioned Toeplitz systems. SIAM J.
Numer. Anal. 26, 503-506 (1989).
[14] Ku, T, Kuo, J: Design and analysis of Toeplitz preconditioners. Proc. IEEE Int. Conf. Acoust.
Speech Sig. Proc., pp- 1811-1814 (1990).
[15] Pan, V.: Fast and efficient parallel inversion of Toeplitz and block Toeplitz matrices. Operator
Theory: Adv. Appl. 40, 359-389 (1989).
[16] Pan, V., Schrieber, R.: A fast, preconditioned conjugate gradient Toeplitz solver. Technical report
89.14, RIACS, NASA Ames Research Center, March 1989.
[17] Linzer, E. Arithmetic complexity and numerical properties of algorithms involving Toeplitz matri-
ces. PhD thesis, Columbia University, New York, NY, October 1990.
[18] Strang, G.: Introduction to applied mathematics. Wellesley, MA: Wellesley-Cambridge 1986.
[19] Gohberg, I C., Fel'dman, L. A:: Convolution equations and projection methods for their solution.
Providence, RI: American Mathematical Society 1974.
[20] Iohvidov, L. S.: Hankel and Toeplitz matrices and forms. Boston, MA: Birkhauser 1982.
[21] Cybenko, G.: Error analysis of some signal processing algorithms. Princeton, NJ: PhD thesis,
Princeton University 1978.

Iterative Toeplitz Solvers with Local Quadratic Convergence 347

[22] Chan, R. H,, Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner.
SIAM J. Sci. Stat. Comput. 10, 104—119 (1989).

E. Linzer M. Vetterli
IBM Research Department of Electrical Engineering
P.O. Box 218 and Center for Telecommunications Research
Yorktown Heights, NY 10598 Columbia University
New York

NY 10027

