000033898 001__ 33898
000033898 005__ 20190316233420.0
000033898 0247_ $$2doi$$a10.1007/BF02248694
000033898 037__ $$aARTICLE
000033898 245__ $$aIterative Toeplitz solvers with local quadratic convergence
000033898 269__ $$a1993
000033898 260__ $$c1993
000033898 336__ $$aJournal Articles
000033898 520__ $$aWe study an iterative, locally quadratically convergent algorithm for solving Toeplitz systems of equations from [R. P. Brent, F. G. Gustavson and D. Y. Y. Yun. ''Fast solution of Toeplitz systems of equations and computation of Pade approximations'', J. Algorithms, 1:259-295, 1980]. We introduce a new iterative algorithm that is locally quadratically convergent when used to solve symmetric positive definite Toeplitz systems. We present a set of numerical experiments on randomly generated symmetric positive definite Toeplitz matrices. In these experiments, our algorithm performed significantly better than the previously proposed algorithm.
000033898 6531_ $$aToeplitz
000033898 6531_ $$aiterative methods
000033898 6531_ $$asteepest descent
000033898 6531_ $$aquadratic convergence
000033898 700__ $$aLinzer, Elliot
000033898 700__ $$0240184$$aVetterli, Martin$$g107537
000033898 773__ $$j49$$k4$$q339-347$$tComputing
000033898 8560_ $$fpaolo.prandoni@epfl.ch
000033898 8564_ $$s11735066$$uhttps://infoscience.epfl.ch/record/33898/files/LinzerV93.pdf$$yn/a$$zn/a
000033898 909C0 $$0252056$$pLCAV$$xU10434
000033898 909CO $$ooai:infoscience.tind.io:33898$$pIC$$particle$$qGLOBAL_SET
000033898 917Z8 $$x218003
000033898 937__ $$aLCAV-ARTICLE-1993-008
000033898 970__ $$aLinzerV93/LCAV
000033898 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000033898 980__ $$aARTICLE